

Haskin Shellfish Research Laboratory Rutgers, The State University of NJ 6959 Miller Avenue, Port Norris, NJ 08349

Stock Assessment Workshop New Jersey Delaware Bay Oyster Beds (16th SAW) February 11-12, 2014

Report

Presenters

Kathryn Ashton-Alcox, Haskin Shellfish Research Laboratory David Bushek, Haskin Shellfish Research Laboratory Daphne Munroe, Haskin Shellfish Research Laboratory

Stock Assessment Review Committee

Scott Bailey, Delaware Bay Oyster Industry Michael Celestino, New Jersey Department of Environmental Protection Stephen Fegley, University of North Carolina Juliana Harding, Coastal Carolina University Jason Hearon, New Jersey Department of Environmental Protection Steve Fleetwood, Delaware Bay Section of the Shell Fisheries Council Mitchell Tarnowski, Maryland Department of Natural Resources John Wiedenmann, Rutgers University Richard Wong, Department of Natural Resources and Environmental Control

Editors

Kathryn Ashton-Alcox, Haskin Shellfish Research Laboratory David Bushek, Haskin Shellfish Research Laboratory Jennifer Gius, Haskin Shellfish Research Laboratory

Distribution List

Delaware Bay Section of the Shell Fisheries Council NJDEP Bureau of Shellfisheries Stock Assessment Review Committee Oyster Industry Science Steering Committee

Tabl	le of	Cont	ents

Historical Overview Pg	5.
The Stock	1
The Fishery	2
The Survey	3
Stock Assessment Design	
Sampling Methodology	4
Stratification and Bed Resurveys	5
Gear Efficiency Corrections	
Current Application	6
2013 Gear Efficiency Study	6
Analytical Approach	
2013 Spring Resurvey	
2013 Fall Assessment Survey	8
Status of the Stock	
Whole Stock	9
Stock by Regions	
UpBay Regions	9
Central Regions	10
Lower Regions	11
Habitat and Recruitment	
Background	11
Shell Half-Lives	11
Shell Budget	12
Shellplanting	12
Spat and Small Oyster Morphology	14
Shellplant, Spat, Oyster Relationships	
Oyster Fishery	
Direct-market Harvest	16
Port sampling	17
Intermediate Transplant	17
Exploitation Rates.	18
Fishing Mortality	20
Stock Performance Targets	
Overview	21
Whole-stock	22
Regional	22
Sustainability	23
Summary of Stock Status	24
Management Advice	
Science Advice	25
Harvest Recommendations	
Intermediate Transplant	27
Direct Market	27

Refere	nces	
Tables		
	Dredge Efficiency Multipliers	
2	Ten Year Resurvey Schedule	
3	2013 Fall Survey Sampling Scheme	
4	2013 Percentile Positions.	
5	Average Half-Lives of Shell	
6	2013 Shell Planting Summary	
7	2013 Spat Recruitment to 2012 Shell Plants	
8	2003 – 2013 Area Planted & Recruitment to Planted Shell	
9	2013 Harvest and Transplant Data	
10	Proposed vs Achieved Harvest	
	a. Intermediate Transplant	40
	b. Direct Market Harvest	41
11	Regional Target & Threshold Reference Points	
12	Stock Status Stoplight Summary	
13	Intermediate Transplant Projections	44
14	Direct Market Projections	45
Figure	6	
l iguit	Map of the Delaware Bay Oyster Beds	46
2	1953 – 2013 Oyster Abundance	
3	2013 Regional Acreage of Oyster Beds	
4	1953 – 2013 Oyster Mortality Rates & Abundance	
·	a. Box-count Mortality	49
	b. Fishing Exploitation	
5	1953 – 2013 Recruitment & Abundance	
C C	a. Shell Planted	50
	b. Spat Abundance	
6	1990 – 2013 Oyster Abundance by Region	
7	1990 – 2013 Box-count Mortality by Region	
8	1953 – 2013 Numbers of Oysters Harvested	
9	1999 – 2013 Gear Efficiency by Bed	
10	2013 Resurvey Cumulative Abundance Grid Order	
	Maps of Grid Distributions Before/After 2013 Resurvey	
	2013 Survey Map of NJ Oyster Beds	
	1990 – 2013 Spawning Stock Biomass & Abundance	
	1990 – 2013 Market Size Abundance	
	1990 – 2013 Abundance by Region	
	a. Spat	60
	b. Small Oysters	
	c. Market Šize Oysters	
16	1999 – 2013 Bushels of Shell Lost on Oyster Beds	
	Map of 2005 – 2012 Shell Plant Sites	
	-	

18	2005 – 2012 Spat Growth on Planted Shell	
	a. Days to 20 mm	63
	b. Shell Length at One Year	63
19	1953 – 2013 Broodstock-Recruitment Relationship	64
20	1953 – 2013 Broodstock Regimes	65
21	1996 – 2013 Oyster Harvest Bushels	66
22	Catch Per Unit Effort for One & Two Dredge Boats	
	a. 1996 – 2013 CPUE	67
	b. 2013 CPUE by Bed	
	2005 – 2013 Oysters per Harvested Bushel	
	2011 – 2013 Oyster Size Frequencies	
	1996 – 2006 Regional Exploitation Rate Percentiles & Fractions	70
26	1997 – 2013 Fishing Mortality	
	a. Percent of All Oysters Harvested	
	b. Percent of Market Size Oysters Harvested	
	1997 – 2013 Fishing Mortality by Region	
	2013 Whole Stock Survey Estimate & Confidence Percentiles	
	2013 Market Size Survey Estimate & Confidence Percentiles	
	2013 Total Abundance Estimates & Confidence Intervals by Region	
	2013 Market Size Abundance Estimates & Confidence Intervals by Region	
	2009 – 2013 Regional Abund/SSB Positions with Targets & Thresholds	
33	2009 – 2013 Regional Abund/Market Abund Positions with Targets/Thresholds	78
Append	lices	
Арр	oendix A Densities per m ² by Grid 2011 – 2013	79
Арр	endix B Region Trend Summaries	
Ī	B.1. Very Low Mortality Region	94
]	B.2. Low Mortality Region	95
]	B.3. Medium Mortality Transplant Region	
	B.4. Medium Mortality Market Region	97
]	B.5. Shell Rock	98
	B.6. High Mortality Region	99
Append	1	
	C.1. Low Mortality Region	
(C.2. Medium Mortality Region	103

Historical Overview

The Stock

The natural oyster beds of the New Jersey portion of Delaware Bay (Figure 1) have been surveyed regularly since 1953; initially in response to historically low oyster abundance (Fegley et al. 2003). Since 1998, annual stock assessments have included the participation of Rutgers University- Haskin Shellfish Research Laboratory, the NJ Dept. of Environmental Protection-Bureau of Shellfisheries, and the oyster industry. From upbay to downbay on Delaware Bay oyster beds, oysters experience increasingly higher salinity, growth rates, predation mortality, disease mortality, and generally higher recruitment. The number of beds surveyed and their groupings have changed since 1953 but as of 2007, there are 23 surveyed beds grouped into six regions designated on the basis of relative magnitude of oyster mortality and current fishery usage (Figure 1). Prior to 2007, the three beds at the upbay limit of the oyster resource (Very Low Mortality region) were not included in the survey, thus most of the long-term time series and all retrospective analyses exclude them (see Figure 2). The acreage for each region is shown in Figure 3.

The long-term time series can be divided into several periods of high or low relative abundance corresponding to periods of low or high levels of disease intensity (Figure 4a). MSX disease, caused by the parasite, *Haplosporidium nelsoni* became a significant periodic source of mortality in 1957 (Ford and Haskin 1982) but has been of little consequence following a widespread epizootic in 1986 after which resistance to it spread through much of the stock (Ford and Bushek 2012). From 1969-1985, MSX and mortality were low while oyster abundances were high. Circa-1990, Dermo disease, caused by the parasite *Perkinsus marinus* became prevalent in the Delaware Bay and has effectively doubled natural mortality rates since then (Powell et al. 2008). Throughout the time series, fishing has usually taken a small fraction of the stock compared to disease (Figure 4b). Shell planting has been an important management tool to enhance habitat and spat recruitment throughout the time series when funding was obtainable (Figures 5a and b).

Dermo disease has exerted major control on the oyster population in the Delaware Bay since 1990. Figures 6 and 7 show abundance and mortality by region for the 'Dermo era' time series. Note that the acreage of a region is not always reflected in the total oyster abundance, particularly during periods of high disease mortality. For example, in the early 1990s, the largest region, the High Mortality region (HM), experienced high Dermo mortalities because of its more saline location downbay and its oyster abundance was lower than that of two smaller regions. The three upbay regions; Very Low Mortality (VLM), Low Mortality (LM), and Medium Mortality Transplant (MMT) are managed as intermediate transplant regions, meaning that oysters are moved (transplanted) to one or more of the three downbay direct-market regions: Medium Mortality Market (MMM), Shell Rock (SR), and High Mortality (HM). Shell Rock, which otherwise would qualify as a medium-mortality bed, is separated from the medium-

mortality market region due to its consistent high productivity. Until 2011, all stock status data for the medium-mortality beds were compiled with Sea Breeze assigned to the market, rather than the transplant, group. Following the 14th Stock Assessment Workshop (SAW) that reported and analyzed the 2011 season, all time series for the medium-mortality region were reconstituted so that Sea Breeze is now included in the transplant, rather than the market category (Figure 1).

The Fishery

From the 19th century to 1996, the natural oyster beds of New Jersey were used as a source of young oysters (seed) that were transplanted to private leases each spring for a period (in earliest times, months; later weeks) called 'Bay Season' (Ford 1997). From about 1953, this fishery was nominally managed by the loosely applied reference point called the '40% rule' that closed beds when the percentage of oysters in a dredge haul went down to 40% (Ford, 1997). Other factors such as spat set and economics were also considered in making management decisions (Fegley et al 2003). There were years of Bay Season closures due to MSX and Dermo mortality in the 1950's, 60's, 80's, and early 90's (Figure 8).

In response to both the increased number of Bay Season closures in the 1980s and 1990s and poor survival of oysters planted on leases, a system called the Direct Market Fishery was adopted for the natural oyster beds in 1996. This allows the industry to market oysters directly off the natural beds and avoid the high mortality rates present on the more downbay leases. Initially, the direct market harvest was based on constant market-size oyster abundance estimations (HSRL 2001) and eventually, a submarket surplus production model developed by Powell et al. (2009). Transplanting from non-marketable beds to other beds within the surveyed resource (Intermediate Transplants) was included and an area management scheme that opened and closed beds or groups of beds developed (see HSRL reports 2001 to 2005). Transplanting and area management were designed to make use of the whole resource and avoid overfishing of any region while sustaining an economically viable harvest. Three of the six regions are designated for Intermediate Transplant where an allocation of oysters from the non-marketable upbay regions is moved to the more saline regions where they quickly attain market quality and enhance the quota in the receiving region.

At the 8th SAW in 2006, the Stock Assessment Review Committee (SARC) established target and threshold abundance reference points based on the 1989-2005 time series for each survey region. Concern over potentially unrealistic submarket surplus production rates in upbay regions led to the abandonment of the original submarket surplus reference point used earlier. The 2006 SARC advised adoption of a system based on the evaluation of fishery exploitation by abundance for the time period 1996-2005 (later extended to 2006). It suggested that quotas be determined on a regional basis using exploitation rates associated with the 40th to 60th percentiles for each region. In 2004, a port-sampling program began to obtain fishery-dependent information on the size and number of oysters marketed, permitting the determination of

exploitation-based estimates on spawning stock biomass as well as abundance (Powell et al. 2005). The exploitation-based reference point system stabilized year-to-year variability in the quota that was a byproduct of the more volatile submarket surplus projection and this basic scheme is still in use.

The Survey

From 1953 until 1989, the annual oyster survey was conducted from a small boat and dredge and occurred throughout a number of months in the fall, winter, and spring. Over time, grids of 0.2-min latitude x 0.2-min longitude were created for the primary beds and approximately 10% of them were sampled based on a stratified random sampling design (Fegley et al. 2003). In 1989, sampling was switched to a large traditional oyster boat, the *F/V Howard W. Sockwell*, using a commercial dredge and sampling was completed in a few days. Annual sampling now occurs during four days between late-October and mid-November with samples returned to the lab for intensive processing. Through 2004, the stock survey assessed most beds yearly although a selection of minor beds was sampled every other year. Since then, all beds have been sampled each year with the exception of Egg Island and Ledge that continue to alternate due to their consistent low abundance.

Prior to 1990, oysters were not measured but were categorized as 'spat', 'yearling', and 'oyster' based on morphology. Survey protocol updates in 1990 included measurements of yearlings and oysters permitting the calculation of biomass as well as abundance. Spat were still classified based on morphology. Boxes were not measured until 1998. Also in 1998, oysters < 20 mm that had been designated 'oyster' based on morphology, were relegated to the spat category. Although counted as oyster in the assessment, the yearling category was continued until 2002. Finally, in 2003, the 20 mm 'spat cutoff' was started to define the difference between being counted as a spat recruit or an oyster that was included in total abundance estimates.

The measurement of survey swept areas and dredge calibration experiments to determine gear efficiency began in 1998 allowing survey results to be quantified per square meter (Powell et al. 2002, 2007). Results of the dredge efficiency experiments indicated that the oyster beds could be divided into two groups; upbay and downbay with Shell Rock in the downbay group (see Figure 1). The dredge captured oysters, boxes, and cultch more efficiently on the downbay beds than on those upbay (Table 1). Multipliers calculated from these experiments are applied to survey dredge hauls by bed group to correct for dredge efficiency and thus account for what the dredge leaves behind to give more accurate density estimates, eg. oysters m⁻² on the bay bottom.

In 2005 by request from the 6th SARC, the survey time series from 1953 to 1997 was retrospectively quantitated (Powell et al, 2008). The estimates were obtained by using bed-specific cultch density determined empirically from 1998-2004. This quantification assumes that cultch density is relatively stable over time. Comparison of retrospective estimates for 1998-

2004, obtained using the `stable cultch' assumption with direct measurements for 1998-2004, suggests that yearly time-series estimates prior to 1997 may be biased by a factor of 2 or less. Cultch varies with input rate from natural mortality and the temporal dynamics of this variation are unknown for the 1953-1997 time frame. However, understanding of shell dynamics on Delaware Bay oyster beds shows that shell is the most stable component of the survey sample supporting the assumption that a two-fold error is unlikely to be exceeded. Accordingly, the quantitative time-series estimates are considered the best for 1953 to 1997.

Prior to 2005, each bed had three strata. For each bed, grids with 'commercial' abundances of oysters 75% or more of the time were called 'high' (or 'test'); grids with marginal or highly variable 'commercial' densities of oysters 25-75% of the time were called 'medium' (or 'high'); grids with abundances well below commercial densities were called 'low' (HSRL personnel; Fegley et al. 1994). There were non-gridded areas between beds. Information in the early 2000's from oystermen indicated that harvesting between gridded areas was not uncommon. Therefore, from 2005 to 2008, the grid overlay was increased to cover all areas from the central shipping channel to the New Jersey Delaware Bay shoreline with every grid being assigned to an existing bed. In 2007, an HSRL survey investigated the upbay extent of the New Jersey oyster resource based on bottom sediment mapping that was conducted by the State of Delaware Department of Natural Resources and Environmental Control and provided by B. Wilson (2007, personal communication). The HSRL survey resulted in the addition of three more beds termed the Very Low Mortality region (VLM) into the stock assessment for a total of 23 beds (Figure 1). Earlier data for these beds are not present in the survey database; therefore, reconstruction of their 1953-2006 time series is not possible.

All oyster beds (except Ledge and Egg Island which have very low oyster abundance; survey averages of < 0.5 oysters per m²) were resurveyed during the 2005-2008 time period. This resulted in a change of strata definition and survey design from that used historically (HSRL 2006). The restratification kept the three strata system within beds and used within-bed densities to determine High, Medium, and Low strata. Details of bed stratification are given in Survey Design below. Since 2002, a fourth 'Enhanced' stratum exists to temporarily identify grids that have received shellplants or transplants. A rotating schedule now restratifies each bed once per decade. Analysis of many survey simulations suggested that a random stratified survey based on the High and Medium quality strata is sufficient to estimate total abundance (HSRL 2006).

Stock Assessment Design

Sampling Methodology

As discussed above, the natural oyster beds of the New Jersey portion of Delaware Bay (Figure 1) have been surveyed yearly since 1953 using a stratified random sampling method. The complete extent of the natural oyster resource is divided into 0.2-min latitude x 0.2-min

longitude grids of approximately 25 acres that are each assigned to one of 23 beds. Each grid on a bed is assigned to a stratum relative to the other grids on that bed. A subset of grids from the High and Medium strata on each bed is randomly selected each year for the survey (Egg Island and Ledge are sampled in alternate years). Grids assigned to the Enhanced stratum are sampled each year.

The survey instrument is a standard 1.27-m commercial oyster dredge towed from either port or starboard. The on-bottom distance for each one-minute dredge tow is measured using GPS recording positions every 2 to 5 seconds. A one-minute tow covers about 100 m² and usually prevents the dredge from filling completely thus avoiding the 'bulldozer' effect. Total haul volume is recorded. Three tows are taken for each sampled grid and a 1/3-bushel subsample is taken from each haul to create a composite 37-quart bushel¹.

Each bushel sample is processed in the laboratory to quantify the following: volume of live oysters, boxes, cultch (normal and blackened from burial), and debris; the number of spat², older oysters, and boxes per composite bushel; the size of live oysters, spat, and boxes from the composite bushel; condition index; and the intensity of Dermo and MSX infections.

Stratification and Bed Resurveys

The current stratification method is based on ordering grids within beds by oyster abundance. Grids with the lowest densities that cumulatively contain 2% of the stock are relegated to the Low quality stratum. Initial analyses of resurveys showed that this stratum could be deleted from the fall stock assessment survey to focus on the grids that support 98% of the stock on each bed. In the initial resurveys, the remaining grids were input into a Monte Carlo model in which they were subsampled repeatedly without replacement under a given set of rules. The mean abundance estimated from the subsample was compared to the mean abundance obtained from the average of all grids. Analysis of many simulations suggested that a random survey based on two further strata would suffice. These are defined by ordering the remaining grids by increasing abundance. Those that cumulatively account for the middle 48% of the stock are designated as the 'Medium Quality' stratum and the rest that cumulatively account for the upper 50% of the stock make up the 'High Quality' stratum. The temporary Enhanced stratum includes transplant- or shellplant-receiving grids. Transplant grids are sampled only in the year they receive transplant and then are reassigned to their original stratum. Shellplant grids are sampled for three years after which they return to their original stratum. The Monte Carlo model is also used to determine how many grids per High and Medium quality stratum must be sampled for a statistically adequate stock assessment survey after each resurvey. Only two beds remain

¹ The New Jersey standard bushel is 37 quarts (~35 liters).

² Beginning in 2003, oyster spat are defined based on size only (< 20 mm, the average firstseason size on the Delaware Bay natural oyster beds). Prior to 2003, oysters were classified as spat based on morphology.

unsurveyed: Ledge and Egg Island. To minimize survey bias from changes in grid quality over time, a 10-year rotating spring resurvey schedule began in 2009 (Table 2)

Gear Efficiency Corrections Current Application

All quantitative and post-1997 time series estimates are corrected for dredge efficiency using the dredge efficiency measurements made from 1998 to 2003 (Powell et al. 2002, 2007). The experiments to establish catchability coefficients¹ were conducted with the F/V Howard W. Sockwell using a commercial dredge and divers on another boat. Parallel transects were sampled to compare numbers of oysters caught in measured tows versus those collected in quadrats by divers presumed to be 100% efficient. Analyses revealed a differential in dredge efficiency between the upper (above Shell Rock) and lower oyster beds. It was also found that on average, the dredge caught oysters with greater efficiency than boxes, and boxes with greater efficiency than cultch. Each survey sample has multipliers applied to the number of oysters, the number of boxes, and cultch volume to account for the efficiency of the dredge. Due to concerns about the effect that natural bay bottom changes over time might have on dredge efficiency, different catchability coefficients (multipliers) are applied to the time series of survey results (Table 1). The 1998-2000 survey results use average catch multipliers from dredge efficiency experiments of that timeframe. Surveys from 2001-2004 used multipliers that also included results from the 2003 dredge calibration project in the average. These multipliers are also applied to surveys prior to 1998. Surveys since 2004 have used the 2003 dredge calibration average by itself under the assumption that it is the most accurate moving forward.

2013 Gear Efficiency Study

In September 2013, dredge efficiency experiments were conducted comparing the commercial dredge on the F/V Howard W. Sockwell with patent tongs deployed by the R/V Baylor. Parallel transects were sampled to compare numbers of oysters caught in measured tows versus those collected by the tongs that were presumed to be 100% efficient. Previous dredge efficiency studies on the NJ oyster beds used the same protocols with the F/V Howard W. Sockwell and a commercial dredge but with divers as the 100% efficient collectors (see Powell et al. 2002, 2007). Other studies have shown that divers and patent tongs are equally efficient (Chai et al. 1992). As in previous dredge efficiency studies, this study showed that dredge efficiency estimates and their associated catchability coefficients are highly variable within a given sampling location, across sampling sites, and within a given bay region (Figure 9). Significant upbay-downbay differences found with previous dredge efficiency experiments were also evident here (nested ANOVA; P=0.00395). However, on the two most upbay sites: Hope Creek and Round Island, the efficiency of the dredge was comparable to that of the downbay group. These two sites have never been included in previous dredge efficiency experiments. No

¹ The catchability coefficient (q) as used here is defined as the inverse of dredge efficiency e: q=1/e.

significant difference was found among beds within a bay region (P=0.26752) or between 2003 and 2013 results (P=0.09233). Further analyses will be done in 2014 and will be presented to the SARC in order to make decisions about how to apply this new dredge efficiency data. Considerations include amongst other things, how best to average the data over time and how to group the sites based on the data.

Analytical Approach

Dredge efficiency-corrected results from the survey are obtained for each sampled grid in number per m² as described above. Grids are then averaged within stratum for each bed. The average is multiplied by stratum area and strata are summed for each bed. Bed sums are added to get regional totals. The quantitative point estimates of abundance in this report sum the High quality, Medium-quality, and Enhanced strata only. Low-quality areas are excluded as described earlier, underestimating bed abundances by approximately 2% providing a conservation buffer on fishing exploitation.

Throughout this report, 'oyster' refers to individuals $\geq 20 \text{ mm} (0.8")$ in longest dimension while 'spat' refers to those < 20 mm. The 20 mm cutoff was chosen as the average spat size through the estuarine gradient of beds in the Delaware Bay. The result of this is that in upbay regions, e.g. Low Mortality, the < 20 mm size class may include oysters that are older than their first season while in the High Mortality region (HM), oysters in their first season may be > 35 mm (1.4"). Prior to 2003, spat were categorized by shell morphology rather than size. Spat abundance is not included in the estimates of oyster abundance but is shown separately. Oysters $\geq 35 \text{ mm}$ are considered to be adults. Calculations of spawning stock biomass (SSB) are based on the $\geq 35 \text{ mm}$ size class and were derived using bed-specific and year-specific regressions between dry weight (g) and shell length (mm) to convert size to biomass. Market-size oysters are divided into individuals $\geq 76 \text{ mm} (3")$ and individuals $\geq 63.5 \text{ mm} (2.5")$, but < 76 mm (3"). These two size categories are based on a knife-edge selection of oysters for market by the fishery that has been routinely observed since monitoring began in 2005 in which nearly all harvested oysters are $\geq 63.5 \text{ mm} (2.5")$ and historical use of the 76-mm (3") boundary to define a market oyster.

Uncertainty around the survey point estimate is calculated by conducting 1,000 simulated surveys, each with a selection of samples from each bed and each corrected for dredge efficiency by a randomly chosen value from all efficiency estimates available (HSRL 2008). Confidence-level values are obtained by sorting the simulated surveys on the number of all oysters and also on oysters ≥ 2.5 ". Dredge efficiency is less certain for oysters < 2.5" so this approach includes uncertainty that cannot be evaluated. However, smaller oysters make up much of the population and sorting by the larger size class sometimes fails to order the surveys in hierarchical position by total abundance.

2013 Spring Resurvey

For the current assessment, the strata for Upper Arnolds and New Beds have been updated based on a Spring 2013 resurvey of all grids on these beds. Evaluation of oyster density on each grid was consistent with other resurveys in finding that a large number of low quality grids could be deleted from the Fall stock assessment survey to focus on the grids that support 98% of the stock on each bed (Figure 10).

Both New Beds and Upper Arnolds were last resurveyed in 2007. At that time, densities on the Medium and High strata of New Beds ranged from 0.2 to 13 oysters per m² (see Appendix A, data year 2006 for New Beds) and 8 grids cumulatively accounted for the upper 50% of oysters (High stratum). The middle 48% of the oysters were contained in 37 grids (Medium stratum) while the 67 remaining grids (Low stratum) cumulatively contain 0 to 2% of the oysters on New Beds. Six years later in Spring 2013, the range of densities for the High and Medium strata on New Beds was higher at 0.8 to 27 oysters per m² with approximately the same division of grid numbers per stratum. There were 9 grids in the High stratum and 38 grids in the Medium stratum after the resurvey. The increase in oyster abundance on New Beds may be the result of two years of relatively high spat sets on New Beds in 2011 and 2012 (see Appendix A).

Oyster density on Upper Arnolds ranged from 39 to 334 oysters per m^2 in 2007 (see Appendix A, data year 2007 for Upper Arnolds) on the Medium and High strata but was lower in 2013, ranging from 17 to 129 oysters per m^2 . Upper Arnolds was used as a transplant donor bed in 2013 a month prior to the Resurvey. The transplant removed 15,500 bushels (approximately 6.3 million oysters) from Upper Arnolds. In 2007, there were 5 high quality and 13 medium quality grids out of 29 total on Upper Arnolds. In 2013, there were 6 high quality and 11 medium quality grids of the 29 on Upper Arnolds. Figure 11 shows the New Beds and Upper Arnolds grid strata before and after the 2013 resurvey.

2013 Fall Assessment Survey

The fall survey is constructed by randomly choosing a designated number of grids from each Medium and High quality stratum on each bed plus transplant and shellplant grids as described above. Sampling for the 2013 assessment survey was conducted October 29 and November 6, 21, and 22 using the oyster dredge boat *F/V Howard W. Sockwell* with Lemmy Robbins as captain. The sampling intensity is shown in Table 3 and the specific grids sampled are shown in Figure 12. Total sampling effort in 2013 was 165 grids: 5 more than in 2012. The Enhanced stratum consisted of 13 selectively sampled grids that included 3 grids that received intermediate transplants in 2013, 3 grids that received shellplants in 2013, 3 grids that received shellplants in 2013, 3 grids that received shellplants in 2011. The intermediate transplant grids revert back to their original stratum after one year. The shellplant grids revert back after 3 years. These grids are then subject to the random choice within strata for following stock

assessment surveys. Effects of the transplants or shellplants on oyster density in the grids get assessed in the next bed resurvey.

Status of the Stock in 2013

Whole Stock – excluding the VLM due to short time series

Whole stock oyster abundance in 2013 was at the 12^{th} percentile of the long-term time series (1953-2013) and at the 22^{nd} percentile of the Dermo era from 1989-2013 (Table 4). This continues a three-year decline in oyster abundance and at 1.17 billion oysters, is the lowest abundance since the extended period of low recruitment in the mid-2000s (Figure 5b). Boxcount mortality was 20%, a slight decline from 2012 (Figure 4a). This level of mortality was at the 70th percentile for the full time series and at the median of the 1989 – 2013 time series (Table 4). Spat (< 20mm, 0.8") abundance in 2013 was at the 39th and 46th percentiles respectively for the long-term and Dermo era time series (Table 4). This abundance was a 45% decrease from 2012 spat numbers but not as low as most of the years since 2000 (Figure 5b). Spawning stock biomass (SSB) and market-sized (>63.5 mm, 2.5") abundance can only be calculated since 1990. SSB often tracks total abundance (Figure 13) and was low in 2013 at the 19th percentile (Table 4). This size group has been relatively stable since 2008 when the current fishery management scheme went into effect although the 2013 abundance is the lowest since then (Figure 14).

Stock by regions¹²

Upbay Regions (Very Low Mortality, Low Mortality)

The VLM and LM regions at the uppermost extent of the Delaware Bay, New Jersev oyster resource, are transplant regions of similar acreage (Figures 1 and 3). Since the mid-2000s, each of these regions has held more oysters than any of the other regions except the MMM which has more area (Figure 6). Average oyster density on non-enhanced (no shellplants or transplants) grids sampled on the VLM for the Fall 2013 survey (Figure 12) was 48 oysters m⁻² and ranged from 1 to 145 m⁻² (Appendix A). This average is not very different from 2011 (when ovster mortality was very high due to a late summer freshet, see Figure 7) or 2012 when oyster densities were 51 and 45 ovsters m^{-2} respectively (Appendix A). Prior to the 2011 mortality event, the average density of oysters on sampled grids of the VLM was 83 m⁻², nearly double the 2013 density. Although the LM region also suffered some freshwater mortality in 2011 (Figure 7), oyster density in 2013 (54 m^{-2}) is similar to that prior to the event in 2010 (59 m^{-2}). Densities in 2013 ranged from 0.2 to 136 oysters m⁻² on the LM (Appendix A). Abundance decreased by over 30% on the LM from 2012 to 2013 and is very low compared to either the 61 or the 24-year time series with abundance at the 7th and 14th percentiles respectively (Table 4). Comparison of Figure 15b and 15c indicates that the decrease is due to fewer oysters in the market (> 2.5") size class. Despite this, the 2013 percentile for market-size abundance is 0.65 for the 24-year time

¹ Oyster per m² densities by grid in Appendix A.

² Region trend summary figures in Appendix B.

series (Table 4) reflecting the fact that a larger proportion of oysters have been market-size in recent years. For example, the proportion of oysters > 2.5" from 1990 to 2001 on the LM was 15% while the same proportion from 2002 to 2013 was 27% (see Figure 15). Due to the short time series, percentiles have not been calculated for the VLM but the abundance there has decreased by 12% since 2012 (Figure 6). Spat set on both the VLM and LM was higher in 2013 than it has been for some years (Figure 15a) and fell at the 47th percentile for the 61-year time series and at the 74th percentile for the 24-year time series (Table 4). The usually lower mortality rates in the VLM and LM regions may allow this relatively high set to survive and increase abundance in these regions (Figure 7). Box-count mortality rates on the LM fell at the 58th and the 50th percentiles for the 61 and 24-year times series respectively (Table 4).

The Central Regions (Medium Mortality Transplant, Medium Mortality Market)

The Medium Mortality Transplant region (MMT) is comprised of three beds, one of which (Sea Breeze) is separated from the other two by the Medium Mortality Market region (MMM) (Figure 1). This bed was originally assigned to the MMM as described previously in the overview although all retrospective numbers have been adjusted so that Sea Breeze data is included with the MMT. The acreage of the MMT is nearly identical to that of the LM while the acreage of the MMM is quite a bit larger (Figures 3 and 6). The average oyster density of the non-enhanced grids sampled on the MMT for the Fall 2013 survey was 26 oysters per m² and ranged from 2 to 82 oysters per m² (Appendix A). On the MMM, oyster densities averaged 41 per m² on non-enhanced grids and ranged from 12 to 81 per m². Since 1990, the MMM region has often had the highest oyster abundance of all six regions with the MMT tracking its trends but at lower abundance (Figure 6). Both regions experienced a decline in oyster abundance from 2011 to 2012 and that continued in 2013. The 2013 total abundance on the MMM was 383 million oysters, a 48% decrease since 2011 and at the 26th percentile for the 1990-2013 time series (Table 4). The situation on the MMT was even worse with a 55% decrease in abundance since 2011 (Figure 6) to 152 million oysters which is only the 10th percentile for abundance in the 24-year time series (Table 4). The sets of percentiles for both time series were very similar for each of these two regions. Box-count mortality rates were high for both regions in 2012 and in 2013: between 22% and 26% (Figure 7). Mortality in 2013 was at the 66th percentile for the MMM region and an extremely high 94th percentile for the MMT for the 24-year time series, again similar to the 61-year time series (Table 4). The trajectory of the MMT and MMM situation is clarified by examining Figure 15. A relatively good spat set in 2010 on both regions (Figure 15a) led to a moderate increase in numbers of small oysters in 2011(Figure 15b), some of which can be seen as larger oysters in 2012 (Figure 15c) but the combination of two years of high mortality in 2012 and 2013 (Figure 7) that correspond with high levels of Dermo disease (see Appendix B) appear to have led to the steep declines in market-sized ovster abundance seen in Figure 15c for 2013.

The Lower Regions (Shell Rock and High Mortality)

Shell Rock (SR) is the smallest region in acreage and the only one composed of a single bed (Figure 3). It has maintained a relatively consistent abundance over the 1990-2013 time series (Figure 6) but has also been the recipient of numerous transplants and shellplants over the years. Density of oysters on non-enhanced grids in the SR for the 2013 survey was 20 m⁻² ranging from 7 to 47 oysters m⁻² (Appendix A). The High Mortality (HM) region is the largest (> 6 times larger than SR; Figure 3) but from 2003 to 2011 had total oyster abundances similar to those on Shell Rock despite also receiving transplants and shellplants (Figure 6). Densities on non-enhanced grids in the HM ranged from 0 to 59 oysters m⁻² and averaged only 11 m⁻² (Appendix A). Abundance on the HM region has increased somewhat for the most recent two vears and is at the median for the 24-year time series (Table 4). This can be attributed to a very good spat set in 2012 (Figure 15a) and two years of decreased mortality rates continuing a downward trend in mortality since 2007 (Figure 7). Mortality on the HM is at a very low 14th percentile for the 24-year time series (Table 4). In contrast, there was a sharp increase in mortality rate on SR in 2012 and that has remained high with a slight decrease in 2013 (Figure 7) where it stands at the 70th percentile for the 24-year time series (Table 4). The mortality increase on SR in 2012 was mirrored on the MMT and MMM; all these regions had a concurrent increase in Dermo weighted prevalence (see Appendix B).

Habitat and Recruitment

Background

Oysters are unusual in terms of stock assessment because they create their own habitat. Spat settlement requires hard surfaces and in their environment, oyster shell is generally the hard surface. Without spat recruitment (and survival) there are no oysters, without oysters, there is no habitat. Oyster shell is not a permanent resource for potential oyster spat (Mann and Powell 2007). Chemical, physical, and biological processes degrade the shell over time (Powell et al 2006). Burial of shell by sediment or smothering by epibionts make it inaccessible to recruits. Fewer oysters equate to less habitat as do smaller oysters whose shells 1) provide less surface area for spat set and 2) degrade faster. The circular nature of this relationship between oysters and the habitat they create makes evaluation and management just as important for shell as it is for oyster abundance (Powell and Klinck 2007; Powell et al 2012). Without a balance between habitat and oysters, the population will decrease over time.

Shell Half-lives

Powell et al. (2006) developed a model to estimate surficial oyster shell (cultch) halflives for each bed. The model was developed during an extended period of low recruitment accompanied by a decline in both oyster abundance and in cultch that suggested loss of shell resource over time. The time series for which half-lives can be calculated begins with 1999, the year after the survey became quantitative. The analyses are subject to substantial yearly variations retrospectively due to limited sampling of some beds in years prior to 2005, because some conversions are poorly known (eg. the individual proportions of oysters, boxes, and shell when they are clumped together), and because the time series is still relatively short, being of the same order as many of the half-life estimates. This results in some half-life estimates being negative which is in fact undefined. Shell half-life estimates for each bed are updated yearly from the Fall assessment survey data.

Bed-specific half-life estimates for surficial cultch for 2013 are presented in Table 5 with estimates from previous years for comparison. Half-lives ranged generally between 3 and 12 years, with a 2013 median of 7.1-7.2 years although a few beds had much higher values and some beds had negative values which are undefined. Shell half-lives for the VLM, Upper Middle, New Beds, or Ledge could not be estimated in 2013. Continued experience with this database confirms the original conclusions of Powell et al. (2006) that half-lives routinely fall below 10 years.

Shell Budget

A shell budget was constructed using the half-life estimates following the model of Powell and Klinck (2007). Values for the beds with uncertain half-lives (Table 5) were borrowed from neighboring beds. Shell inputs are counted when oysters die and become boxes or when clamshell is planted. Shell is debited based on half-life values. New Jersey oyster beds have been losing on the order of 300,000 bushels of cultch annually since 1999 with loss rates much higher early in the time series (Figure 16). Since 1998 is the first year that full survey data are available, 1999 is the first year an estimate can be made. The shell budget was updated using the 1998-2013 time series based on 2013 half-life estimates with comparisons that use the 2012 and 2011 half-life estimates. The shell budget shows a general reduction in shell loss until 2005 followed by two years of increased shell loss until 2008 when the shell budget estimates bound the equilibrium point of 0 (Figure 16). From about 2000 to 2006, there was very little spat set or shellplanting (Figure 5a and b). Shell input resulted from oyster mortalities at rates of 15-20% per year (Figure 4a). In 2006-2008, there were large-scale shellplants (Figure 4a) and in 2007-2008 mortalities remain high and shell loss has generally increased (Figure 16).

Shellplanting

Shellplanting is recognized as an important management activity to maintain the oyster beds and has been practiced at various intensities throughout the survey time series with planted volumes usually dependent on funds (Figure 5a). Earlier programs planted large volumes of oyster or clamshell on NJ oyster beds, particularly in the 1960s and 70s. Efforts since 2003 have primarily used clamshell (quahog and surf clam), a by-product of local clam processing plants. There are two types of plantings: direct and replant. Both are dependent on careful timing and site selection. Direct planting places the bare shell directly on a chosen site while replanting first puts the shell downbay in a high recruitment but low survival area. Once it catches a set, the spatted shell is moved upbay by suction dredge to its final site. Shellplant sites are sampled for their first three years in the Fall survey. Planted shell continues to recruit spat in years following the initial plant.

In 2013, there were two direct shellplants and one replant that were sampled in the Fall Survey (Table 6). The replant was part of a mitigation program that began in 2011 on Middle bed, in the Medium Mortality Transplant region. This bed is further upbay than most planted areas and spat sets here are less reliable than those downbay. The 2013 Fall survey sampled the replanted Middle sites and results show spat densities of 20 and 26 spat m⁻² on those grids (see Appendix A). The average density of spat found on non-planted grids on Middle in the survey was about half that at 11 spat m⁻² (ranging from 1 to 41 spat m⁻²). Average spat density on non-planted grids in Shell Rock was similar to that of Middle (10 spat m⁻² ranging from 2 to 26 m⁻²). Spat densities on the planted Shell Rock grids were approximately three times higher at 28 and 30 m⁻² (see Appendix A).

Spat recruitment in 2013 to shellplants deployed in 2012 was also monitored in the 2013 Fall survey (Table 7). In most years, the recruitment to shell planted in the previous year is lower than the recruitment to shell planted within the current year. This was true in 2013. Ship John grids planted in 2012 had fewer spat per bushel of clamshell (Table 7) than any of the grids planted in 2013 on Middle (upbay of Ship John) or Shell Rock (downbay of Ship John) (Table 6, Figure 12). The spat per bushel of clam shell on the older Ship John plantings were 0 and 5 (Table 7) while the newer plantings on Middle and Shell Rock had 21 and about 80 spat per bushel, respectively (Table 6). Densities of spat in 2013 on the two Ship John grids planted in 2012 were lower (0.3 and 0.4 m⁻²) than the average of densities for non-planted grids on Ship John (6 spat m⁻²; Appendix A).

As has been noted before (eg. prior SAW reports, Ashton-Alcox et al. 2009), shellplants provide a noticeable increase in overall spat set, even when looked at from the perspective of a whole region as opposed to a grid or bed (Table 8). This has been true in every year (for which we have data) that shellplanting was done, regardless of shellplant volume or recruitment level. In many cases, the return in recruitment from a small percentage of a region's area planted is quite high. For example, in 2011, a small percentage (2.1%) of the Shell Rock region was planted with 50,000 bushels of clamshell and that one grid's worth of planting provided nearly 50% of all spat recruiting to Shell Rock (Table 8). On the other hand, twice as much shell on a similar proportion of total regional area on the Medium Mortality Market region in 2012 yielded only 1% of the total regional spat recruitment. In 2013, the Shell Rock direct planting of 100,000 bushels of shell on two grids was 4.5% of Shell Rock's area and was responsible for 16% of the total spat recruitment to Shell Rock (Table 8). The replanting of sparsely-spatted shell onto 1.7% of the Medium Mortality Transplant region in 2013 yielded merely 0.7% of the total spat that recruited to this region (Table 8).

Projections of potential numbers of market-sized oysters (>63.5 mm, 2.5") that might result from the 2013 recruitment to each shellplanting are given in Tables 6 and 7. For these projections, years to market size were calculated using von-Bertalanffy parameters as described in Kraeuter et al. (2007) and previous reports for each region of shellplants. For all shellplanted grids where spat on plant were found in 2013, the estimate is three years to market-size oyster. The median of the regional 'juvenile' (first year post-spat) mortality rate from the 1990-2013 time series was used for year 1 and the median regional 'adult' mortality rate for the same time series was applied to the next two years to determine numbers of individuals remaining in the 3^{rd} year. The number can be further translated into bushels of market-size oysters if desired by dividing by 264, the number of oysters in a bushel going to market. The number per bushel is determined by a dock-monitoring program run throughout the harvest season as part of the stock assessment process; it is described below.

Spat and Small Oyster Morphology

For the purposes of this stock assessment, oysters < 20 mm are defined as spat (recruits in their first season or 'young of the year'). This assumes 20 mm to be the average size an oyster attains in its first season of growth across all regions. The estuarine salinity gradient over the Delaware Bay oyster beds corresponds to a gradient in growth that is faster downbay (higher salinity) and slower upbay (lower salinity). Application of the single 20 mm size cutoff to define a spat would thus define a 40 mm individual as a small oyster when it is actually a spat in its first year or it might erroneously define a 19 mm individual as a spat when it is an oyster in its second year. Abundance, biomass, and quota allocation estimates (for transplant regions) in the fall stock assessment are based on oysters >20 mm, some of which are probably 'young of the year'. Shellplantings comprised of surf clam and ocean quahog shell deployed at known times on an oyster bed can be used to develop more precise estimates of spat and (first and second year) oysters for stock assessment purposes.

A preliminary analysis was done using oyster and spat length frequency observations from various shell plantings deployed from 2005 to 2012 (n = 19 plantings). Of the plants used for this analysis, there were: 5 on Ship John, 7 on Shell Rock, 4 on Bennies Sand, 2 on Nantuxent, and 1 on Hawk's Nest (Figure 17). Non-spatted clamshell was planted in late June or early July throughout this time and monitored approximately monthly between March and November for two years after deployment. Oysters on the planted shell were measured and the mean length from each site at each time provides a measure of the growth for that cohort. This generates a population-based growth metric that incorporates loss of animals from the population. If it became difficult to distinguish cohorts at a single site due to subsequent spat sets catching up in growth, the time series was terminated. These data provide growth rates from 19 shell plants on 5 beds in 3 regions of the central part of the stock over 8 years. The growth rates can be used to estimate the number of days it took for each cohort to reach the 20mm spat cutoff threshold and the size of an average oyster in the cohort at one year post-settlement.

Two distinct groups of cohort observations were identified: early settling cohorts that reached 20mm in \leq 225 day, and late settlers that reached 20mm in \geq 225 days. The early settlers reached 20mm significantly before the late settlers in approximately 120 days (about 4 months) while the late settlers had to survive the cold temperatures of late fall, winter, and early spring when no growth occurs and reached 20mm in an average of 330 days or approximately, 11 months (Figure 18a). Both early and late settlers reach an average size \geq 20mm shell length at 1 year.

These two response variables (days to reach 20 mm and average length at 1 year) were analyzed using analysis of variance (ANOVA) to test whether year, salinity and settlement timing were significant drivers of the growth on shell plants for each of the early and late settlement groups. Year (df =7; F=46; p<0.0001) and settlement timing (df =1; F=22; p=0.0015) significantly influence the time it takes a cohort to reach the 20 mm cutoff; however, salinity has no significant effect. Year (df =7; F=9; p<0.003) and salinity (df =2; F=10; p=0.007) significantly influence the shell length of a cohort at 1 year old whereas settlement timing is no longer significant (Figure 18b).

Some of these spat cohorts were sampled (shell measurements) within two weeks of the Fall (2013) stock assessment survey when the 20mm spat definition is applied to samples. At that time, on average, 45% ($\pm 16\%$, 95% confidence interval) of the spat sampled on shell plants were 20mm or smaller and would be correctly categorized as spat in their first year. This means that on average, for the beds in the central area of the stock (where the shellplants were situated), potentially half of the spat are being misidentified based on the 20mm cutoff. From the data available, it appears that the fraction misidentified varies annually and with settlement timing. The central part of the stock that contains the shellplants from which these measurements are made includes both direct market and intermediate transplant regions. The quota estimates for the following year's intermediate transplants is based on the abundance of all oysters ≥ 20 mm evaluated during the Fall survey. These findings indicate that some proportion of these purported oysters are actually spat (in their first year) possibly overestimating the animals available for transplant. Further study is warranted to determine bed (or region) -specific fractions of spat that may be misidentified using the 20mm cutoff.

Broodstock-Recruitment

Broodstock-recruitment relationships for the New Jersey Delaware Bay oyster survey time series suggest a positive relationship between broodstock abundance and recruitment of spat. Figure 19 shows the abundance of broodstock, excluding the VLM region, for the entire time series since 1953. Time periods of low, high, and medium abundance are separated into regimes and plotted as the abundance of broodstock from each Fall survey against the recruitment resulting from that broodstock in the following year. A 1:1 line or a Ricker curve adequately describes the relationship of broodstock and recruitment over the duration of the time series. The time series can be broken out into four distinct abundance regimes and the broodstock:recruit relationship plotted individually by regime (Figure 20). Within each time period, the broodstock:recruit relationship seems adequately described by a 1:1 line suggesting stability and undersaturation with respect to spat recruitment within the time period.

Oyster Fishery

Direct Market Harvest

The 2013 direct market harvest occurred from April 8th to November 22nd and included a period of curtailed harvest hours during summer months to comply with the New Jersey's approved *Vibrio parahaemolyticus* management plan¹. The number of single-dredge boats dropped from 17 to 14 as a result of continued license consolidation that allows one boat to harvest on more than one license. Total quota allocation is divided by the number of licenses in the direct market fishery. The number of dual-dredge boats remained at 21 for a total of 35 active boats. The total direct market harvest in 2013 was 84,276 bushels (Table 9).² This was an increase of 6,136 bushels from 2012 and marked the 7th consecutive year with a harvest at or above the 18-yr mean (Figure 21). Nine of the 14 beds opened to the direct market harvest, plus one transplant bed, were fished in 2013 (Table 9) but 90% of the harvest came from five beds: Shell Rock (29%), Ship John (23%), Cohansey (13%), Bennies Sand (13%) and Nantuxent (12%).

The catch per unit effort (CPUE) increased in 2013 possibly helped by license consolidation (Figure 22a.). There has been a general increase in CPUE since the 2001 low point of the direct market time series. Figure 22b shows CPUE on the beds where harvest occurred in 2013. CPUE was highest on Shell Rock and Ship John, representing 29% and 23% of the harvest respectively and lowest on New Beds and Strawberry, both representing <1% of the harvest (Table 9). Sea Breeze, not a direct market bed but harvested on in 2013, represented 6% of the direct market harvest with an intermediate CPUE (Table 9, Figure 22b).

The fraction of each bed covered by a dredge during the harvest season was estimated using the methods described by Banta et al. (2003) and exceeded bed area in five of the nine beds fished for the 2013 direct market (Table 9). The highest fraction (2.87) occurred on Nantuxent followed by Shell Rock (2.30) and Ship John (2.27). Powell et al., (2001) suggest that a cumulative annual swept area of less than four times the area of a bed is unlikely to have significant negative impacts on the oyster population. In general, these fractions have been decreasing over the years with fewer beds experiencing coverage fractions > 1 (see harvest tables in previous reports).

¹ <u>http://www.nj.gov/dep/bmw/Reports/2013vpplan.pdf</u>

² Harvest data provided by the New Jersey Department of Environmental Protection.

Port Sampling

The port-sampling program counts and measures oyster at dockside from boats unloading direct market harvest. In 2013 the average number of oysters per 37-qt bushel harvested was 269 including small but non-targeted oysters (Figure 23). The average number of market-size oysters per marketed bushel in 2013 was 227, a number that has remained relatively constant since 2004 when port sampling began. Conversion of oysters to bushels for allocation projections used the value of 264 oysters bu⁻¹ in 2013, the average of 10 years of port sampling (Figure 23). This value is the overall mean of all dockside ovsters per bushel and those presumably targeted (> 2.5") oysters per bushel. The rationale for using the mean is that the number of attached small oysters will vary widely between years depending on recruitment dynamics so that using the total number per bushel risks underestimation. On the other hand, the smaller number does not account for all of the ovster removals and this undervalues the fishing mortality rate. Figure 24 illustrates the 2013 size frequency of dockside oysters compared to those from the two years before. Compared to the previous two years, there was a higher proportion of oysters >3" harvested in 2013 than in 2011 or 2012. This may be a result of the higher spat sets and small oysters moving into the system around 2010-2011, particularly in the MMM region (Figures 15a, 15b) and is evident in the higher numbers per bushel of small oysters depicted in Figure 23 for 2010 and 2011.

Intermediate Transplant¹

In 2013, the intermediate transplant program moved 20,500 bushels of culled material from the Low Mortality (LM) region to Shell Rock in late April. An additional 550 bushels were moved from Liston Range in the VLM due to a misunderstanding (Table 9). The Very Low Mortality (VLM) region has been closed to exploitation since 2011 when it experienced high oyster mortalities following an extreme late summer freshet. In late April/early May, 14,600 bushels of culled material was moved from the Medium Mortality Transplant (MMT) region to Bennies Sand in the High Mortality (HM) region.

A sample was taken by the NJDEP from each deckload of each transplanting boat throughout the transplant period and evaluated by HSRL personnel. Overall 12.3 million oysters were moved which was less than the target number (15.4 million) associated with exploitation decisions made by the Shellfish Council in March 2013 for each of these regions after the 2013 SAW (see Table 9, Appendix C, and HSRL 2013). The LM transplant moved 85% of the oysters (8,459,940) that would represent the chosen 60th percentile exploitation rate and the MMT transplant moved only 70% of the oysters (3,798,531) that would represent the chosen 60th percentile exploitation rate and in fact moved only 86% of the oysters that would represent the 50th percentile exploitation rate (Table 9 and Appendix C). It is unknown if logistical reasons or inadequate densities of oysters was the cause of the transplants failing to reach the desired goals.

¹ Intermediate transplant memoranda in Appendix C.

Exploitation rates for the Transplant regions are based on all sizes of oysters because high proportions of oysters smaller than market size get moved during transplanting. Boats deckloading ovsters for transplant use automatic cullers as the only sorting device because of the large volumes that must be moved. Small oysters (< 2.5") do not enter into the calculations for the quota increase in the receiver regions but a good proportion of them survive and add to abundance in that region. Ashton-Alcox, et al. (2013) found proportions of small oysters in the transplant to be as high as 60%. In the 2013 LM transplant, small oysters made up a similar proportion (56%) while in the MMT transplant, they made up a much smaller percentage (34%). This is likely a reflection of the placement of the beds used in these transplants and the sizes of the oysters on them. The LM region is upbay of the MMT region and oysters do not tend to grow as large as oysters further downbay (see Kraeuter et al. 2007). This is particularly true on beds upbay of Arnolds (see Figure 12). The LM transplant included ovsters from all three beds in the region as well as 550 bushels erroneously moved from a bed in the VLM region (Appendix C). The MMT transplant included 6,200 bushels from Sea Breeze bed, adjacent to Shell Rock and Cohansey, beds in Direct Market regions where oysters tend to grow larger than they do upbay. Sea Breeze was previously classified as a Direct Market bed in the Medium Mortality Market region (see earlier text, Historical Overview) but very few harvesters had used it so it was moved into the MMT in 2011 to limit Intermediate Transplant from Middle bed to alternate years and thus spread transplant exploitation pressure more evenly (HSRL 2012, see 2011 Management goals).

Oysters ≥ 2.5 " contained in the transplant were converted to market bushel equivalents using the number of market oysters per bushel (266) calculated from the Port Sampling program of 2012 (HSRL 2013) and were added to the quota for the receiving regions. The transplants increased the quota by 23,454 bushels. This was 27% of the final Direct Market allocation (Table 10b) and the highest proportion of total allocation due to the intermediate transplant since 2010.

Exploitation Rates

The basis for the range of exploitation rates used for the fishery is the exploitation record from the early part of the direct market era (see Historical Overview). These abundance-based rates were from a period of conservative fishery management during a time of persistent high disease pressure and were deemed likely to provide conservative management goals. The 2006 SARC suggested exploitation-based reference points based on the median (50th percentile) exploitation rate defined in terms of the fraction of abundance removed per region for the years 1996 to 2005, the latest data year at that time. Since then, SARCs have retained the precedent that the 40th, 50th, and 60th percentiles of abundance-based exploitation in that time series normally be used.

The basic approach was revised in 2007 using estimates of size-dependent exploitation rates because direct market fishing and intermediate transplants remove size classes differently. Two sets of exploitation percentiles were calculated: one using the assumption that all size classes were removed proportionately in transplants and one using a knife-edge assumption that size classes ≥ 2.5 " were removed proportionately for direct market regions.

Fishing activity during this decade-long time series was concentrated on the more downbay regions of the stock leading to limited data for regions upbay of Shell Rock. Data were so limited for the Transplant regions that it was decided that they should share the same set of exploitation rates. An adjustment was made to the original set of Transplant region exploitation percentiles by the 2009 SARC in order to smooth a temporally biased change in exploitation rates at the 50th percentile that separated as high and low. The 50th and 60th percentile values (.0127 and .0233 respectively) from the original data were averaged. The average (.0188) is used as the 50th percentile and .0127 is used as the 40th (Figure 25).

The 1996-2006 exploitation data for the Medium Mortality Market region (MMM) that lies between the transplant regions and Shell Rock has a relatively narrow range from the 10^{th} (0.01% of oysters ≥ 2.5 " were harvested) to the 90th percentile (3.6% of oysters ≥ 2.5 " were harvested). The 1996-2006 range of exploitation for Shell Rock, just downbay of the MMM, was much larger (4.4 - 23.6 %) from the 10^{th} to the 90th percentiles (Figure 25). This led to an experimental fishery at the 100th percentile rate of 4% exploitation on the MMM that began in 2009. Note that the 100th percentile exploitation rate of 4.0% on the MMM is still below the 10^{th} percentile exploitation rate of 4.4% on Shell Rock (Figure 25).

The range of exploitation rates is highest on Shell Rock, approximately 19 percentage points, yet the rates at the 40^{th} and 50^{th} percentiles, considered as those normally to be used for exploitation, are almost identical at 8.7 and 8.8%, respectively (Figure 25). The 60^{th} percentile rate of 11.4% is the upper bound of the usual percentile rates considered. Consequently, when market-size oyster abundance is low on Shell Rock and other parameters are not promising, the only logical choice for conservative exploitation is to choose the rate associated with the 25^{th} percentile, 5.3%.

Unlike the situation on Shell Rock, the largest increase between exploitation percentiles for the High Mortality region occurs between the 40^{th} (1.2% exploitation) and the 50^{th} (6.5% exploitation). The change on either side of those two percentiles is very small leading to limited management choices in rates of exploitation (Figure 25). This pattern is not unlike that described above for the Transplant regions.

The percentiles associated with the chosen exploitation rates following the advice of the 2013 SARC are shown in Table 10. The 60^{th} percentile rate of 2.33% exploitation was chosen

for both the LM and MMT region transplants in 2013; higher than that chosen in 2012 for these regions (Table 10a). The achieved rates of exploitation as described in the Intermediate Transplant text were lower than those chosen. In the case of the MMT region, it was much lower as discussed earlier. This is in contrast to 2012 when the exploitation rate associated with the 50th percentile (1.88%) was chosen but the transplant resulted in exploitation greater than the 60th percentile rate of 2.33%.

Examination of Table 10b shows that in the six years listed, the total allocation has never been harvested. 'Under-harvest' in these years has ranged from 722 bushels left in the allocation in 2008 when over 90,000 bushels were allocated, to nearly 7,000 bushels left in 2010 when the allocation was the lowest of the six years at just over 81,000 bushels. That is a range of 0.8 - 8.5% of allocated bushels left unharvested. The average number of allocated bushels left unharvested is 3,089 out of an average harvest allocation of 86,728 bushels or 3.6%. Reasons for this likely vary from the meteorological to the logistical to the economical.

Fishing Mortality

During the Bay Season years (see Historical Overview) from 1953 until the start of the Direct Market era in 1996, the oyster fishery commonly took well over 200 million oysters off the natural oyster beds of Delaware Bay, NJ (Figure 8). Since the inception of the Direct Market fishery, the number of oysters landed from the natural oyster beds in Delaware Bay, NJ has been an order of magnitude less than that; around 20 million oysters. This difference results from a change in population size (Figure 2), and a change in management strategy that sought to control exploitation rates while also shifting the harvest from all sizes of oysters to market-sized oysters.

Total harvest in 2013 was 84,276 bushels (Tables 9, and 10b) or approximately 22.7 million oysters, using the value of 269 harvested oysters per bushel (Figure 23). This number represents a fishing mortality of 1.6% of all oysters, excluding those from the VLM region in 2013, a proportion in line with exploitation rates since 2004 when the current management procedures were being established (Figure 26a). The fraction of market-sized oysters fished in 2013 was 3.3%, excluding the VLM, again similar to other values since about 2004 (Figure 26b).

Regional fishing mortality is shown in Figure 27 as both the percentage of all oysters and the percentage of ≥ 2.5 " oysters. For historical reasons explained in the previous section, exploitation rates are generally higher in the downbay regions and are based on the larger oysters for the direct market. The intermediate transplant exploitation used in the upbay regions targets all sizes of oysters. Transplanting from the uppermost region, VLM, began in 2009 and was about 1.2% of all oysters for three years but this region remains closed after the late 2011 extreme freshet (Munroe et al. 2013). As mentioned earlier, a small portion (2%) of the LM transplant came from the VLM in 2013 (Table 9). This was only 0.07% of the oysters in the VLM region (Figure 27). Transplants conducted on the Low and Medium Mortality Transplant

regions (LM, MMT) in 2013 were at the 2.3% exploitation rate, the 60th percentile for all sizes of oysters (Table 10), which the fishery achieved. The exploitation rates for \geq 2.5" oysters only were somewhat higher: 2.4% for LM and 3% for MMT (Figure 27).

The percentage of market-sized oysters fished in 2013 on each of the three Direct Market regions (MMM, SR, HM) decreased for the second year in a row (Figure 27). The largest decrease was on Shell Rock where fishing mortality on market-size oysters was 13% in 2011, 12% in 2012, and 6.8% in 2013. The reason for this is likely the receipt of 21,050 bushels of oysters transplanted from the LM to Shell Rock in 2013 (Table 10). The last time Shell Rock received a similar amount of transplant material was in 2006 when it received 17,900 bushels (HSRL internal records) and the resulting fishing mortality rate on market-size oysters was 4.5%, the lowest rate since 1997 when the direct market program began. In both years, 2006 and 2013, fishing mortality on all oysters in Shell Rock was negative due to the influx of small oysters with the transplants (Figure 27). Although the HM also receives transplanted oysters in most years, the effects on fishing mortality are usually harder to see because it is a much larger region. The exception to this is 2002 - 2004 when there were high rates of disease mortality, a dearth of small oysters after a series of set failures, and many transplanted oysters were put on this region (HSRL internal records) resulting in two years of substantially negative fishing mortality.

Stock Performance Targets

Overview

Long-term patterns since assessments began in 1953 indicate that the Delaware Bay oyster stock is largely controlled by disease pressure. The overall abundance and biomass of the stock is generally driven by the intensity of disease and the mortality it causes. The record provides evidence of decadal or longer shifts in disease regimes driven by MSX from the 1950s to the 1980s and by Dermo disease since 1990 (Figure 4a). At least three periods are indicated in the record. The first was low abundance on the oyster beds in the 1950s that continued as MSX caused significant mortality. In the 1960s, MSX and mortality rates declined on the beds while shellplanting increased (Figure 5a) beginning a new period marked by high abundance that lasted into the 1980s. Circa 1985, an extended drought facilitated the spread of MSX upbay causing extensive mortality that began a third period characterized by high mortality and low abundance. Although the MSX epizootic had dissipated by 1990 and the population became resistant (Ford and Bushek 2012), abundance did not recover as Dermo disease became established and effectively doubled natural mortality (Powell et al. 2008). This state of low abundance and high mortality has persisted. Dermo disease and mortality are highly influenced by salinity along the upbay-downbay gradient that creates regions of varying oyster mortality identified in Figure 1 (Bushek et al. 2012). The continuing influence of Dermo disease on Delaware Bay oyster population dynamics has led the SARC to conclude that management goals should be set relative to population assessments made during the 'Dermo era' that began in 1990.

Whole-stock

Although the oyster resource is managed by region, the population is a single stock (Hoffman et al. 2009) and thus whole-stock reference points are important criteria upon which to judge stock status. From 2006 to 2010, the SARC considered three whole-stock abundance targets. The first two are the sums of the regional total and market-size oyster abundance targets: 2.311 billion and 334 million (see Table 11 and following Regional section for derivation) with the thresholds at half those values (1.156 billion and 167 million). The third was derived more theoretically from an analysis of biological relationships and formulation of a surplus production model (Powell et al. 2009) and is described in previous stock assessment reports. Several SARCs have debated the validity or relevance of using the surplus production model to identify whole stock reference points and have thus far agreed to use the medians of the sums of regional total and market abundance from the period 1989-2005 as whole stock reference points. Note that the Very Low Mortality region (VLM) has been excluded from all stock-wide reference point estimates and comparisons because time series data are insufficient to include them at this time.

The 2013 total abundance was estimated to be 1.209 billion oysters (excluding the VLM) of which 411 million were market-sized. The 1.2 billion estimate falls significantly below the whole-stock reference point of 2.3 billion (Figure 28) as it has at least since 2009 (HSRL 2010). This estimate falls around the 15th percentile of the 2013 survey uncertainty envelope where the lower 90% confidence limit is 1.184 billion and the threshold abundance reference point for the whole stock is 1.156 billion. In contrast to total abundance, market abundance across the entire stock sits significantly above the stock performance target as it has since 2010 (Figure 29). The whole stock market-sized abundance estimate of 411 million falls just over the 50th percentile with the 90% confidence limits being 349 and 469 million.

Regional

In 2006, the SARC set specific targets and thresholds for total abundance, market-sized abundance, and spawning stock biomass based on the 1989-2005 and 1990-2005 time periods respectively under the assumption that this time period likely represents the entire scope of oyster population dynamics in the present climate and disease regime. For each region, the median abundance and SSB values from these time periods were set as targets with values half these levels set as threshold levels (Table 11). Due to the absence of a time series for this period, the Very Low Mortality region (VLM) targets and thresholds were established by applying Low Mortality region (LM) conditions adjusted for region area (HSRL 2012).

In 2013, total oyster abundance was at the threshold in the two most upbay regions, VLM and LM but was slightly below the threshold in the two Medium Mortality regions (Figure 30). In contrast, total abundance estimates on Shell Rock and the HM fall significantly above the thresholds. Market-size oyster abundance in 2013 was above threshold in all regions, near target

in the VLM and MMT and above target in the other four regions, considerably so for LM and Shell Rock (Figure 31).

Figure 32 illustrates the relationship of 2013 total abundance and biomass by region with respect to their targets and thresholds (see Table 11) and in relationship to the previous four years (2009-2012). Figure 33 shows the same information with market-size abundance in place of biomass. As noted earlier, total abundance hovers around threshold values in the four regions upbay but approaches the target value in Shell Rock and the HM region (Figures 32 and 33). Similarly, biomass in the uppermost three regions (VLM, LM, MMT) is also at threshold level although it approaches the target in the MMM region and exceeds it at Shell Rock (Figure 32). Biomass is near the middle of target and threshold values in the HM (Figure 32). The abundance-SSB trend has been generally downward on the three uppermost regions, is intermediate in the MMM, and has increased on SR and HM (Figure 32). The latter is probably due to a combination of recent spat sets, transplants, and shellplants.

Unlike total abundance or spawning stock abundance, market-size abundance in all regions is near or above the target values (Figure 33). This has been true in all years shown on the figure with the exception of the freshwater event that killed many market-sized oysters on VLM in 2011. However, market-size abundance has decreased on three of the six regions in 2013. Both total abundance and market-size abundance have decreased on the LM and MMT and market-size abundance has fallen on the MMM (Figure 33). Market-size abundance has risen on Shell Rock, possibly helped by the addition of over 21,000 bushels of transplanted oysters (Table 10) and survival of the relatively large 2010 set (Figure 15a). Although the HM does not show as large an increase in the market-size oyster category, total abundance did increase from 2012 to 2013 (Figure 33). This region did receive transplant in 2013 but the bulk of the increased abundance is most likely due to growth of the large 2012 spat set (Figure 15a).

Sustainability

The concept of a sustainable stock under federal guidelines articulated by the Magnuson-Stevens Fishery Conservation and Management Act is expressed in the concepts of `overfishing' and an `overfished' stock. For full discussion of its application to the New Jersey Delaware Bay oyster stock, refer to the initial definition from the 2011 SAW with updates in the following years (HSRL 2011, 2012, 2013). Because the Delaware Bay oyster population is strongly influenced by disease, the 2010 SAW considered a number of metrics to judge sustainability that provide analogies to federal criteria. The most important of these is the trend in market-size abundance (Figure 14). Market-size abundance is the least volatile of the stock metrics (abundance, SSB, market abundance) and so may be most likely to provide unambiguous evidence of over-exploitation were it to occur. The 1990-2013 time series shows that the abundance of market-size oysters has remained relatively stable for over two decades, fluctuating around a median of 4.62×10^8 (Figure 14). This stability comes from two sources. First, a balance exists between the death of larger oysters primarily caused by disease and the recruitment potential of the population. Second, the fishing mortality rate has been constrained such that removals by the fishery have not exceeded the replacement capacity of the population. As a consequence, the population has been able to recover from epizootic events during periods of reduced mortality from disease. This can be considered indicative of a stock that is not in an overfished state. Fishing mortality has remained below 5% over much of the 1953-2013 times series (Figure 4b) and below 2% from 1997-2013 (Figure 26a) whereas natural mortality rates have been much higher at least since 1990 (Figure 4a), an indication that overfishing is not occurring.

Summary of Stock Status

Table 12 is a 'stoplight' table summarizing the 2013 status of the oyster stock by region relative to the previous five years or the 1989-2013 time period. Different parameters of the regional stocks are designated as improving (green), degrading (orange), or neutral. Metrics include percentile ranks ($40^{th} - 60^{th}$ percentiles are considered neutral), comparison to 5-yr median, comparison to biological reference points, comparison to mortality rates, or comparison to Dermo levels known to cause mortalities.

Several regional patterns are apparent in Table 12. First, while abundance and biomass have decreased in the VLM and LM regions, good recruitment combined with low Dermo levels and mortality rates are positive indicators of future improvement. In contrast, declines in abundance and biomass in both the MMT and MMM regions were not accompanied by positive changes in future indicators. Market-size abundance is lower on both regions compared to the previous five years although on the MMT, it is still above the median of the 1990-2013 time series at the 57th percentile. Total and market abundance on SR increased in 2013 after receiving transplants but total abundance remained low (34th percentile) in comparison to the time series while market abundance was above the median at the 61st percentile. Dermo and mortality rates remain high on SR and recruitment has decreased indicating improvement in the coming year is unlikely without intermediate transplant and/or shell plants. The HM region is in the best relative condition with nearly all indicators positive or neutral.

Across regions, total abundance and spawning stock biomass are the most consistently negative indicators but market abundance remains near or above target levels in all. Recruitment and mortality patterns were unusual in that they were positive upbay (VLM, LM), negative in the central regions (MMT, MMM, SR), and relatively positive in the HM region downbay. Dermo levels remain high downbay of the Low Mortality Region.

Management Advice

• The fact that not one region fell near its total abundance target indicates that actions to enhance recruitment and minimize shell loss continue to be important. To increase

abundance, a shellplanting program to enhance recruitment must continue with the aim of planting 250,000 bushels or more of shell annually. Sources of funding to expand shellplant efforts should be sought wherever possible.

- The 2013 high Dermo and natural mortality levels combined with low recruitment on the SR and MMM regions (Table 12) augur future low abundance without transplant and shellplant activity. The SARC recommends directing 2014 shellplants to Ship John in the MMM and to Shell Rock.
- A replant program to move spatted shell upbay should be implemented to return cultch and increase recruitment to the transplant regions. The SARC expressed particular concern about the MMT due to its low recruitment and increased mortality. The SARC notes that the Athos shellplanting on Middle bed is a useful model but low set on the initial downbay planting was not as good as expected.
- The SARC notes that the VLM has behaved as an ephemeral resource. Therefore, exploitation should be limited to periods of high abundance so the shell resource is not unduly depleted.
- The ten-year resurvey program should be continued in order to reallocate grids to strata as required to take into account changes in oyster distribution on beds as a consequence of natural population dynamics and enhancement programs.
- Because Dermo is the primary factor controlling mortality in the oyster population, the seasonal monthly monitoring program should continue. The collection of ancillary data on mortality, size-frequency, and growth rates should be continued as part of this program.

Science Advice

- Based on preliminary results from the 2013 dredge calibration study, the SARC concluded that averaging all current and previous dredge efficiency estimates is likely the best method to apply to existing data. A more thorough analysis of the 2013 study should be completed and options for using this new information should be presented for evaluation. Mid-year contact with the SARC may be required to make decisions prior to the next stock assessment. The evaluation should include examination of previous and new dredge calibration regressions using tow-based data to determine if more accurate estimates can be obtained from data collected *in situ* as the fall survey occurs.
- Analyses of spat growth rates should continue to evaluate the 20-mm cutoff for defining spat. Additional data are needed from upbay areas and should be collected when

possible. These data should be used to re-evaluate spat recruitment events across the time series.

- Re-evaluation of the stock-performance reference points should be undertaken consistent with the apparent change in population dynamics observed between the decades of the 1990s and 2000s. The SARC recommends an analysis be developed to examine whether or not the time period of 1989 to 2005 should continue to be used as a baseline for establishing stock performance targets and thresholds.
- Updated growth rate information for all oyster sizes is needed to determine whether growth rates may be increasing with increases in water temperatures due to climate change. Use of the ten-acre Gandy's Beach Oyster Restoration and Enhancement Area being used by Project PORTS (Promoting Oyster Restoration Through Schools) program may provide information on growth rates up through market sizes that may prove valuable as the growth data on larger size classes within the fishery are difficult to obtain.
- The SARC recommends further examination of the management strategy that uses percentiles of exploitation from the 1996-2006 time series with a view toward understanding how the different regions respond to different exploitation rates. Refinement of methods to review prior recommendations for intermediate transplant and direct market harvest in comparison to management decisions and population response should continue. Previous suggestions for new strategies including using the median exploitation rate +/- 25%, a box plot with the hinges set at a desired level, or 40% and 60% of the range bounded by the 0 and 100th percentiles represent reasonable alternatives for consideration.
- Experimental efforts should be explored to consider mechanisms to facilitate rapid recovery of the VLM to maintain its integrity and so that it can be used more routinely as a resource for the intermediate transplant program. The experimental plant of spatted shell to Hope Creek is worth repeating with a better capture of spat from down bay.
- A long-range plan for reef management taking into account sea level rise, salinity shifts and other factors related to climate change, should be developed.
- Further evaluation of the rate of box disarticulation throughout the regions, particularly in the LM and VLM, is needed.
- The relationship between condition and other population and disease variables should be investigated and contrasted among different management areas.
- A more fundamental understanding and explanation of the shell budget should be developed. Some more basic metrics such as cultch volumes through time should be examined.
- Data on fecundity and spawning potential are needed for the VLM.

Harvest Recommendations

Based on the observations in this report, the SARC makes the following recommendations for 2014 harvest and intermediate transplant:

- Oyster quota allocation should continue to be set using abundance-based exploitation rates as decided in 2006 using the exploitation rate percentiles for the time series of 1996-2006.
- All transplants should use mechanical cullers and all attempts should be made to limit the transplantation of cultch.
- The VLM region should remain closed to allow continued recovery from the 2011 mortality event. The SARC recommends that this strategy continue until recovery is evident before significant reliance is placed on this region by the intermediate transplant program.
- The LM region may be used for transplanting up to the 60th percentile of exploitation with the transplant targeted to Ship John in the MMM. The SARC cautions, however, against using the same donor bed in consecutive years. Upper Arnolds was the primary bed used in 2013 (Table 13).
- The MMT region may be exploited up to the 60th percentile and that transplant should go to Shell Rock (Table 13). The MMT region, however, has more negative indicators than any other (Table 12). Therefore, lower exploitation rates should be considered. Regardless of the level chosen, exploitation must be split between Upper Middle, Middle, and Sea Breeze such that no more than 50% of the allocation is taken from Middle. Efforts should be made to ensure that Sea Breeze is not used as both a transplant and harvest bed.
- The MMM region indicated some signs of degradation following multiple years of stability and high productivity. The SARC recommends reducing harvest pressure to the 60th or possibly the 75th percentile following a successful intermediate transplant to the region (Table 14).
- The SR region improved in 2013 but disease remains high and recruitment low; caution is required to avoid damaging this valuable region. An exploitation rate no higher than the 50th percentile is recommended unless a successful intermediate transplant is directed to this bed after which exploitation may be increased to the 60th percentile (Table 14). Given that SR contains only 6% of the stock (Table 12) but provided 29% of the Direct Market harvest (Table 9), continued efforts to improve this region are advised.
- The HM region had the most consistently positive indicators. With relatively strong recruitment and a relatively abundant sub-market size class, the exploitation rate may be increased to the 60th or even the 75th percentile to help maintain a stable harvest (Table 14).

• No increases in quota should occur before transplants are completed and efforts should be made to complete a significant portion of the intermediate transplant program before harvesting is allowed on the region.

References

- Ashton-Alcox, K.A., E.N. Powell, D. Bushek. 2009 Shell-Planting program in Delaware Bay, *Report to the U.S. Army Corps of Engineers*. 34pp.
- Ashton-Alcox, K.A., E.N. Powell, J.A. Hearon, C.S. Tomlin, R.M. Babb. 2013. Transplant Monitoring for the New Jersey Delaware Bay Oyster Fishery. J. Shellfish Res., 32: 2, 459-469.
- Banta, S.E., E.N. Powell, and K.A. Ashton-Alcox. 2003. Evaluation of dredging effort by the Delaware Bay oyster fishery in New Jersey waters. *N. Am. J. Fish. Manag.* 23:732-741.
- Bushek, D., S.E. Ford and I. Burt. 2012. Long-term patterns of an estuarine pathogen along a salinity gradient. J. Mar. Res. 70:225-251.
- Chai, A., M. Homer, C. Tsai, and P. Goulletquer. 1992. Evaluation of oyster sampling efficiency of patent tongs and an oyster dredge. *N. Am. J. Fish. Manag.* 12: 825-832.
- Fegley, S. R., S. E. Ford, J. N. Kraeuter & D. R. Jones. 1994. Relative effects of harvest pressure and disease mortality on the population dynamics of the Eastern oyster (Crassostrea virginica) in Delaware Bay. NOAA, Final Rpt # NA26FL0588. Bivalve, NJ: Haskin Shellfish Research Laboratory, Rutgers University. 36pp text, 28 tables, 58 figures.
- Fegley, S.R., S.E. Ford, J.N. Kraeuter, and H.H. Haskin, 2003. The persistence of New Jersey's oyster seedbeds in the presence of oyster disease and harvest: the role of management. *J. Shellfish Res.* 22:451-464.
- Ford, S.E. 1997. History and present status of molluscan shellfisheries from Barnegat Bay to Delaware Bay. In: *The History, Present Condition, and Future of the Molluscan Fisheries of North and Central America and Europe, Vol. 1,North America* (MacKenzie, C.L., Jr., V.G. Burrell Jr., A. Rosenfield and W.L. Hobart, Eds.) pp. 119-140. U.S. Dept. of Commerce, NOAA Tech. Report NMFS, Seattle, WA.
- Ford, S.E. and H.H. Haskin. 1982. History and epizootiology of *Haplosporidium nelsoni* (MSX), an oyster pathogen in Delaware Bay, 1957-1980. *J. Invertebr. Pathol.* 40:118-141.
- Ford, S.E. and D. Bushek. 2012. Development of resistance to an introduced marine pathogen by a native host. *J. Mar. Res.* 70:205-223.
- Hofmann, E., D. Bushek, S. Ford, X. Guo, D. Haidvogel, D. Hedgecock, J. Klinck, C. Milbury, D. Narvaez, E. Powell, Y. Wang, Z. Wang, J. Wilkin and L. Zhang. 2009. Understanding how disease and environment combine to structure resistance in estuarine bivalve populations. Oceanography. 22:212-231.

- HSRL. 2001. Report of the 2001 Stock Assessment Workshop (3rd SAW) for the New Jersey Delaware Bay Oyster Beds. Haskin Shellfish Research Lab., Port Norris, NJ. 53 pp.
- HSRL. 2006. Report of the 2006 Stock Assessment Workshop (8th SAW) for the New Jersey Delaware Bay Oyster Beds. Haskin Shellfish Research Lab., Port Norris, NJ. 95 pp.
- HSRL. 2008. Report of the 2008 Stock Assessment Workshop (10th SAW) for the New Jersey Delaware Bay Oyster Beds. Haskin Shellfish Research Lab., Port Norris, NJ. 131 pp.
- HSRL. 2010. Report of the 2010 Stock Assessment Workshop (12th SAW) for the New Jersey Delaware Bay Oyster Beds. Haskin Shellfish Research Lab., Port Norris, NJ. 145 pp.
- HSRL. 2011. Report of the 2011 Stock Assessment Workshop (13th SAW) for the New Jersey Delaware Bay Oyster Beds. Haskin Shellfish Research Lab., Port Norris, NJ. 179 pp.
- HSRL. 2012. Report of the 2012 Stock Assessment Workshop (14th SAW) for the New Jersey Delaware Bay Oyster Beds. Haskin Shellfish Research Lab., Port Norris, NJ. 190 pp.
- HSRL. 2013. Stock Assessment Workshop New Jersey Delaware Bay Oyster Beds (15th SAW) Report. Haskin Shellfish Research Lab., Port Norris, NJ. 133 pp.
- Kraeuter, J.N., S. Ford, & M. Cummings. 2007. Oyster growth analysis: a comparison of methods. J. Shellfish Res. 26:479-491.
- Mann, R. and E.N. Powell. 2007. Why oyster restoration goals in the Chesapeake Bay are not and probably cannot be achieved. *J. Shellfish Res.* 26:4, 905-917.
- Munroe, D., A. Tabatabai, I. Burt, D. Bushek, E.N. Powell, and J. Wilkin. 2013. Oyster Mortality and Disease in Delaware Bay: Impact and Recovery Following Hurricane Irene and Tropical Storm Lee. *Estuar. Coast. Shelf Sci.* 135:209-219.
- Powell, E.N., K.A. Ashton-Alcox, S.E. Banta and A.J. Bonner. 2001. Impact of repeated dredging on a Delaware Bay oyster reef. J. Shellfish Res. 20:961-975.
- Powell, E.N., K.A. Ashton-Alcox, J.A. Dobarro, M. Cummings, and S.E. Banta. 2002. The inherent efficiency of oyster dredges in survey mode. *J. Shellfish Res.* 21:691-695.
- Powell, E.N., J.J. Gendek, K.A. Ashton-Alcox. 2005. Fisherman choice and incidental catch: Size frequency of oyster landings in the New Jersey oyster fishery. J. Shellfish Res. 24:469-476.
- Powell, E.N., J.N. Kraeuter and K.A. Ashton-Alcox. 2006. How long does oyster shell last on an oyster reef? *Estuar. Coast. Shelf Sci.* 69:531-542.

- Powell, E.N., K.A. Ashton-Alcox, J.N. Kraeuter. 2007. Re-evaluation of eastern oyster dredge efficiency in survey mode: application in stock assessment. N. Am. J. Fish. Manage. 27:492-511.
- Powell, E.N. and J.M. Klinck. 2007. Is oyster shell a sustainable estuarine resource? J. Shellfish Res. 26:181-194.
- Powell, E.N., K.A. Ashton-Alcox, J.N. Kraeuter, S.E. Ford and D. Bushek. 2008. Long-term trends in oyster population dynamics in Delaware Bay: regime shifts and response to disease. *J. Shellfish Res.* 27:729-755.
- Powell, E.N., J.M. Klinck, K.A. Ashton-Alcox, J.N. Kraeuter. 2009. Multiple stable reference points in oyster populations: implications for reference point-based management. *Fishery Bulletin* 107:133-147.
- Powell, E.N., J.M. Klinck, K.A. Ashton-Alcox, E.E. Hofmann, & J. Morson. 2012. The rise and fall of *Crassostrea virginica* oyster reefs: The role of disease and fishing in their demise and a vignette on their management. *J. Mar. Res.*, 70, 505-558.

Table 1. Dredge efficiency multipliers (catchability coefficients) used to convert oyster, box, and cultch estimates to 'on bottom' numbers. Time series indicates how sets of multipliers are applied to the data. Sets of multipliers are averaged results from one or more dredge calibration experiments conducted at various times (see text). Upbay, all beds above Shell Rock; Downbay, Shell Rock and beds below. The oyster and box multipliers include all size classes of oysters (or boxes) >20mm recognizing that the smaller sizes are often attached to larger sizes and that oysters and boxes are often attached to each other.

Time Series	Bed Group	Oysters	Boxes	Cultch
Base	Upbay	8.22	11.12	17.11
	Downbay	2.96	5.67	8.97
1998-2000	Upbay	9.40	11.47	21.49
	Downbay	2.83	6.50	9.55
2001-2004	Upbay	8.22	11.12	17.11
	Downbay	2.96	5.67	8.97
2005-2013	Upbay	7.30	10.87	13.71
	Downbay	3.11	4.64	8.14

Table 2. Ten year resurvey schedule for NJ Delaware Bay oyster beds and number of grids on each bed. All beds were resurveyed prior to 2009 when the current schedule was implemented. One grid is 0.2" latitude x 0.2" longitude (approximately 25 acres, $101,175 \text{ m}^2$ or 10.1 hectares).

<u>Year</u>	Bed	<u># Grids</u>	<u># Grids/Year</u>	<u>Resurvey Year</u>
1	Cohansey Bennies Sand	83 49	132	2009
2	Ship John Nantuxent Point	68 68	136	2010
3	Beadons Middle Vexton	38 51 47	136	2011
4	Sea Breeze Shell Rock	48 93	141	2012
5	Upper Arnolds New Beds	29 112	141	2013
6	Bennies	171	171	Scheduled 2014
7	Arnolds Strawberry	99 29	128	
8	Upper Middle Hog Shoal Liston Range	84 23 32	139	
9	Hawk's Nest Hope Creek	28 97	125	
10	Fishing Creek Round Island	67 73	140	

Table 3. Sampling scheme for the 2013 Fall survey of the Delaware Bay oyster beds in New Jersey. The numbers given are the number of sampled grids devoted to that bed stratum. The strata designations are described in the text. The Enhanced stratum includes those grids that received transplant or shellplant in the survey year or shell plant within the previous two years. Egg Island and Ledge are sampled in alternate years.

Region	Bed	High <u>Quality</u>	Medium Quality	Low Quality	Enhanced
Very Low	Hope Creek	4	4	0	1
Mortality	Fishing Creek	2	3	0	0
	Liston Range	2	4	0	0
Low	Round Island	2	3	0	0
Mortality	Upper Arnolds	3	4	0	0
	Arnolds	3	3	0	0
Medium	Upper Middle	1	3	0	0
Mort. Trans.	Middle	2	5	0	2
	Sea Breeze	3	4	0	0
Medium	Cohansey	5	5	0	0
Mort. Mkt.	Ship John	6	5	0	2
Shell Rock	Shell Rock	4	6	0	5
High	Bennies Sand	3	6	0	2
Mortality	Bennies	3	9	0	1
	Nantuxent Pt.	3	3	0	0
	Hog Shoal	3	3	0	0
	Strawberry	1	3	0	0
	Hawk's Nest	2	3	0	0
	New Beds	4	5	0	0
	Beadons	2	3	0	0
	Vexton	2	2	0	0
	Egg Island	1	5	0	0
	Ledge	0	0	0	0
Total		61	91	0	13

Grand Total: 165

Table 4. Percentile positions in the indicated time series for the given bay regions and stock variables. A lower percentile equates to a lower value of the variable relative to the entire time series. Table is divided into the 61-year time series (1953–2013) and the 24-year time series (1989–2013). Very Low Mortality region is not included in the percentile evaluations of the time series. Recruitment values do not include the enhancements from shell planting.

1953 – 2013	Oyster		Spat		Box-Count
1755 2015	Abundance		Abundance		Mortality
Baywide	0.123		0.385		0.697
Low Mortality	0.074		0.467		0.582
Medium Mortality Transplant	0.090		0.287		0.926
Medium Mortality Market	0.254		0.402		0.779
Shell Rock	0.352		0.320		0.746
High Mortality	0.385		0.566		0.467
	Oriston		Q ₁ , ₁ , ₁	G · G 1	
1000 2012	Oyster	Market >2.5"	Spat	Spawning Stock	Box-Count
1989 – 2013	<u>Abundance</u>	$\frac{\text{Market } > 2.5^{\text{m}}}{\text{Abundance}^{1}}$	Spat <u>Abundance</u>	Biomass ¹	Box-Count <u>Mortality</u>
1989 – 2013 Baywide	5	1	1	1 0,	
	Abundance	<u>Abundance</u> ¹	Abundance	Biomass ¹	Mortality
Baywide	Abundance 0.220	$\frac{\text{Abundance}^1}{0.348}$	Abundance 0.460	$\frac{\text{Biomass}^1}{0.188}$	Mortality 0.500
Baywide Low Mortality	<u>Abundance</u> 0.220 0.140	<u>Abundance</u> ¹ 0.348 0.652	<u>Abundance</u> 0.460 0.740	Biomass ¹ 0.188 0.229	<u>Mortality</u> 0.500 0.500
Baywide Low Mortality Medium Mortality Transplant	<u>Abundance</u> 0.220 0.140 0.100	<u>Abundance</u> ¹ 0.348 0.652 0.565	<u>Abundance</u> 0.460 0.740 0.380	Biomass ¹ 0.188 0.229 0.146	<u>Mortality</u> 0.500 0.500 0.940

¹SSB and market abundance values used the 1990 - 2013 time series.

Table 5. Average half-lives in years for surficial oyster shell on Delaware Bay oyster beds for 1999–2013 time series. Beds arranged in upbay to downbay order. --, unable to determine.

Location	<u>99-08</u>	<u>99-09</u>	<u>99-10</u>	<u>99-11</u>	<u>99-12</u>	<u>99-13</u>
Hope Creek						
Fishing Creek						
Liston Range						
Round Island	21.95	47.45	17.94			
Upper Arnolds	5.49	7.43	4.81	7.67	8.27	6.59
Arnolds	3.70	6.12	5.31	7.09	5.69	6.57
Upper Middle						
Middle	7.02	4.09	4.18	6.29	4.72	5.54
Sea Breeze	21.29	37.39	6.64	33.17	6.63	17.27
Cohansey	4.88	3.79	5.85	5.56	5.84	7.14
Ship John	2.09	3.20	3.08	3.49	2.83	3.65
Shell Rock	4.49	4.44	2.95	4.62	2.95	4.86
Bennies Sand	3.84	5.08	4.65	10.61	5.35	8.47
Bennies	3.34	7.95	5.97	11.12	8.76	8.62
Nantuxent Pt.	2.75	2.56	3.10	3.58	3.58	5.05
Hog Shoal	2.78	3.39	3.12	4.71	5.42	5.83
Strawberry	4.29	5.82	15.56	19.65	9.06	11.91
Hawk's Nest	4.44	11.87	4.55	4.61	5.73	10.85
New Beds	65.71	20.70	9.67	36.22	109.78	
Beadons	5.28	6.28	4.63	9.55	13.18	7.28
Vexton	6.00	3.34	3.83	18.80	7.25	22.74
Egg Island		5.40	5.60	78.65	84.18	102.88
Ledge	6.91	7.71	5.34	5.84		

Table 6. Summary of shell planting activities for 2013. Direct plants occurred on Shell Rock. Spatted shell was moved from downbay plantings by suction dredge and replanted on Middle. Spat per bushel estimates are from the clamshell volumes in Fall 2013 survey dredge samples. Projections of market-size abundance used regional natural mortality at the juvenile rate in year 1 and at the adult rate in following years. The mortality rates used were the 50th percentiles of the 1989-2013 time series for the Medium Mortality Transplant (Middle) and Shell Rock regions. Calculation of years to market size used von Bertalanffy parameters (see Kraeuter et al., 2007) for the Medium Mortality region (Middle) and Shell Rock. Bushel conversion used 264 oysters per bushel from port sampling data.

	Plant Type	Clamshell Planted (bu)	Clamshell Spat bu ⁻¹	Clamshell Total Spat	Median Juvenile Mortality Rate	Juvenile Years	Median Adult Mortality Rate	Adult Years	Potential Mkt-Size Abund.(bu)
Middle 27/28	replant	23,050	21	476,204	0.187	1	0.164	2	985
Shell Rock 29	direct	50,000	83	4,127,936	0.488	1	0.194	2	4,899
Shell Rock 30	direct	50,000	78	3,897,536	0.488	1	0.194	2	4,626

Table 7. Summary of 2013 spat recruitment on 2012 shell plants. Spat per bushel estimates are from the clamshell volumes in Fall 2013 survey dredge samples. Projections of market-size abundance used regional natural mortality at the juvenile rate in year 1 and at the adult rate in following years. The mortality rates used were the 50th percentiles of the 1989–2013 time series for the Low Mortality region (Hope Creek) and the Medium Mortality Market region (Ship John). Calculation of years to market size used von Bertalanffy parameters (see Kraeuter et al., 2007) for the Low Mortality region and the Medium Mortality region. Bushel conversion used 264 oysters per bushel from port sampling data.

	Plant Type	Clamshell Planted (bu)	Clamshell Spat bu ⁻¹	Clamshell Total Spat	Median Juvenile Mortality Rate	Juvenile Years	Median Adult Mortality Rate	Adult Years	Potential Mkt-Size Abund.(bu)
Hope Creek 59	replant	12,000	0	0	0.255	1	0.085	4	0
Ship John 36	direct	50,000	5	257,614	0.251	1	0.202	2	436
Ship John 53	direct	50,000	0	0	0.251	1	0.202	2	0

Table 8. Contribution of shell planting by region, 2003 - 2013. Plant volumes include both directly planted shell and spatted shell moved into regions. Area planted is the percentage of the region's area that received plant. Spat on plant is the percentage of total recruitment due to the spat on planted shell. Details of 2013 and 2012 shellplantings are given in Tables 6 and 7; details from previous years can be found in earlier reports. --, no shellplanting.

	High	Mortality R	legion	Shell Rock Region			
	Plant Vol	Area	Spat on	Plant Vol	Area	Spat on	
Year	(bu)	Planted	Plant	(bu)	Planted	Plant	
2003	16,130	0.3%	17%				
2004							
2005	12,250	0.3%	12%	89,337	5.6%	54%	
2006	142,207	1.5%	58%	125,354	5.6%	50%	
2007	43,360	0.3%	1%				
2008	172,487	2.1%	47%				
2009	86,072	0.6%	17%	58,233	2.1%	31%	
2010	49,645	0.3%	26%	40,199	2.1%	29%	
2011	50,000	0.3%	4%	50,000	2.1%	49%	
2012							
2013				100,000	4.5%	16%	

	Medium	Mort. Mark	et Region	Medium Mort. Transplant Region			
	Plant Vol	Area	Spat on	Plant Vol	Area	Spat on	
Year	(bu)	Planted	Plant	(bu)	Planted	Plant	
2003							
2004							
2005							
2006							
2007	188,523	5.3%	5%	43,000	1.5%	11%	
2008	21,898	1.1%	13%				
2009							
2010							
2011				18,000	1.6%	0.6%	
2012	100,000	2.2%	1%				
2013				23,050	1.7%	0.7%	

	Low	Mortality R	egion	Very Low Mortality Region			
	Plant Vol	Area	Spat on	Plant Vol	Area	Spat on	
Year	(bu)	Planted	Plant	(bu)	Planted	Plant	
2012				12,000	2.0%	1.8%	
2013							

Table 9. Harvest and transplant data for 2013. Bed areas include medium and high quality grids only. Fraction covered is the estimated fraction of bed area swept by industry dredges during the harvest season. Fractions above 1 indicate a total swept area greater than the bed area. Note: harvest bushels contain primarily oysters ≥ 2.5 " whereas transplant bushels may contain a large fraction of smaller oysters.

		Bed		TT (TT (
D 1	D 1	Area	Fraction	Harvest	Harvest	Transplant	Transplant
<u>Region</u>	Bed	(acres)	Covered	Bushels	Fraction	Bushels	<u>Fraction</u>
VLM	Hope Creek	734				0	0
	Fishing Creek	315				0	0
	Liston Range	289				550	0.02
LM	Round Island	472				2,250	0.06
	Upper Arnolds	446				15,550	0.44
	Arnolds	630				2,700	0.08
						_,, , , ,	
MMT	Upper Middle	236				3,200	0.09
	Middle	814				5,200	0.15
	Sea Breeze	525		5,454	0.06	6,200	0.17
MMM	Cohansey	1234	1.05	10,583	0.13		
	Ship John	1208	2.27	19,279	0.23		
SR	Shell Rock	1130	2.30	24,280	0.29		
	D · A 1	-00	4.0.	10.011	0.4.0		
HM	Bennies Sand	788	1.85	10,841	0.13		
	Bennies	2077	0.06	870	0.01		
	Nantuxent Pt.	631	2.87	10,218	0.12		
	Hog Shoal	447	0.83	2,385	0.03		
	Strawberry	447	0.07	140	0		
	Hawk's Nest	500	0	0	0		
	New Beds	1236	0.06	226	0		
	Beadons	210	0	0	0		
	Vexton	316	0	0	0		
	Egg Island	1000	0	0	0		
	Ledge	474	0	0	0		
	Total or Mean	16,158	1.28	84,276	1.00	35,650	1.00

Table 10. Shellfish Council allocation decisions based on SARC recommendations and the ultimate outcomes after Intermediate Transplant (a) and Direct Market harvest (b) from 2008 to 2013. Quota and transplant decisions are based on SARC recommendations of several abundance-based exploitation rate projections for each region. Some options for the Direct Market regions come with SARC advice to transplant from upbay regions prior to fishing. Additional quota from transplants is determined post-transplant from the proportion of marketable oysters in the transplants converted to bushels using the latest average number of oysters per bushel from the port-sampling program. (b) also shows the proportion of the final quota that derives from the transplant.

a.

	Transplant	Council		Actual	Predicted Quota	Actual Quota	
Transplant	Donor	Exploit.	Bushels	Exploit.	Increase	Increase	Receiver
<u>Year</u>	<u>Region</u>	<u>Percentile</u>	Moved	<u>Percentile</u>	<u>(bu)</u>	<u>(bu)</u>	Region
2008	LM	50th	9,450	>50th	5,492	8,161	MMM
	MMT	50th	8,200	>60th	2,677	6,337	HM
2009	VLM	40th	9,100	>40th	5,609	7,699	MMM
	LM	50th	10,400	>50th	7,427	9,713	HM
	MMT	60th	14,100	<60th	7,326	7,865	HM
2010	VLM	40th	6,550	40th	5,992	4,839	SR
			1,400			1,232	HM
	LM	60th	1,200	<60th	12,864	839	SR
			17,050			14,814	HM
	MMM	50th	12,550	<50th	5,566	5,502	HM
2011	VLM	40th	7,950	40th	4,716	6,540	MMM
	LM	40th	10,150	>40th	4,450	6,098	HM
	MMT	50th	17,750	>50th	5,940	10,549	HM
2012	LM	40th	7,650	<40th	3,509	3,558	HM
	MMT	50th	21,825	>60th	5,869	11,574	HM
2013	LM	60th	21,050	<60th	12,883	13,949	SR
	MMT	60th	14,600	<50th	9,307	9,505	HM

		Council		Transplant				_
		Direct	Direct	Quota				Transplant
Harvest	Direct	Market	Market	Increase	Total	Actual Total	Under	Fraction of
Year	<u>Market Region</u>	<u>Percentile</u>	<u>Quota (bu)</u>	<u>(bu)</u>	<u>Quota</u>	<u>Harvest (bu)</u>	<u>Quota</u>	<u>Quota</u>
2008	Med. Mort. Mkt.	50th	16,710	8,161	24,871	25,370	499	0.33
	Shell Rock	60th	29,889	0	29,889	29,736	-153	0.00
	High Mortality	60th	29,507	6,337	35,844	34,776	-1,068	0.18
	TOTAL		76,106	14,498	90,604	89,882	-722	0.16
2009	Med. Mort. Mkt.	100th	24,634	7,699	32,333	24,558	-7,775	0.24
	Shell Rock	60th	21,858	0	21,858	22,918	1,060	0.00
	High Mortality	50th	13,316	17,578	30,894	33,214	2,320	0.57
	TOTAL		59,808	25,277	85,085	80,690	-4,395	0.30
2010	Med. Mort. Mkt.	100th	29,410	0	29,410	23,491	-5,919	0.00
	Shell Rock	40th	10,814	5,678	16,492	17,493	1,001	0.34
	High Mortality	60th	13,793	21,548	35,341	33,391	-1,950	0.61
	TOTAL		54,017	27,226	81,243	74,375	-6,868	0.34
2011	Med. Mort. Mkt.	100th	31,551	6,540	38,091	38,286	195	0.17
	Shell Rock	60th	24,775	0	24,775	24,112	-663	0.00
	High Mortality	60th	16,995	16,647	33,642	32,072	-1,570	0.49
	TOTAL		73,321	23,187	96,508	94,470	-2,038	0.24
2012	Med. Mort. Mkt.	100th	30,219	0	30,219	29,213	-1,006	0
	Shell Rock	60th	22,071	0	22,071	22,628	557	0
	High Mortality	60th	14,006	15,132	29,138	26,299	-2,839	0.52
	TOTAL		66,296	15,132	81,428	78,140	-3,288	0.19
2013	Med. Mort. Mkt.	100th	34,576	0	34,576	35,316	740	0.00
	Shell Rock	40th	9,875	13,949	23,824	24,280	456	0.59
	High Mortality	60th	17,592	9,505	27,097	24,680	-2,417	0.35
	TOTAL		62,043	23,454	85,497	84,276	-1,221	0.27

b.

Table 11. Region-specific stock performance biomass and abundance targets and thresholds. The target is taken as the median of abundance or biomass for 1989-2005 (1990-2005 for biomass) with the exception of the Very Low Mortality beds. The threshold is taken as half of these values. SSB, spawning stock biomass. Reference point estimates for the Very Low Mortality beds are obtained by assuming the equivalent condition on a per-area basis to the Low Mortality beds and using the Low Mortality bed numbers so-corrected as the base values.

	Very Low <u>Mortality</u>	Low <u>Mortality</u>	Medium Mortality <u>Transplant</u>	Medium Mortality <u>Market</u>	<u>Shell Rock</u>	High <u>Mortality</u>
Abundance						
Target (50 th Percentile)	451,681,800	531,733,632	342,824,960	850,364,224	113,350,896	473,125,088
Threshold (1/2 Target)	225,840,900	265,866,816	171,412,480	425,182,112	56,675,448	236,562,544
<u>SSB</u>						
Target (50 th Percentile)	149,078,151	175,499,360	178,104,672	337,117,920	62,450,392	267,982,768
Threshold (1/2 Target)	74,539,075	87,749,680	89,052,336	168,558,960	31,225,196	133,991,384
Mkt (≥ 2.5″)						
<u>Abundance</u>						
Target (50 th Percentile)	36,856,056	43,388,077	46,366,382	167,407,462	25,622,244	51,205,771
Threshold (1/2 Target)	18,428,028	21,694,039	23,183,191	83,703,731	12,811,122	25,602,886

Table 12. Summary status of the stock for 2013. Green indicates variables judged to be improved relative to the 1989 (or 1990) – 2013 time period or improving relative to 2012 or the 2008-2012 median. Orange indicates variables judged to be degraded or degrading for the same comparisons. A neutral color is used for near-average conditions falling within the 40th to 60th percentiles of the 1989 (or 1990) – 2013 time period and also for trend changes less than + 15%.

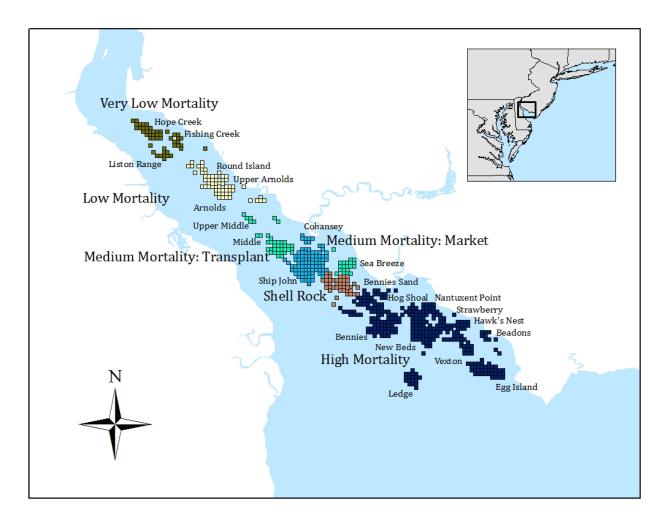
1	Transplant	Transplant	Transplant	Market	Market	Market
	Very Low	Low	Medium	Medium	Shell	High
	Mortality	Mortality	Mortality	Mortality	Rock	Mortality
Fraction of Stock	0.15	0.19	0.11	0.27	0.06	0.22
Total Abundance						
2013 Percentile	Not Incl.	0.14	0.10	0.26	0.34	0.50
2008-2012 Median	Decrease	Decrease	Decrease	Decrease	Decrease	Increase
2012-2013 Trend	Decrease	Decrease	Decrease	Decrease	Increase	Increase
Target-Thresh.	Below	Between	Below	Between	Between	Between
Spawning Stock Biomass						
2013 Percentile	Not Incl.	0.23	0.15	0.23	0.52	0.31
2008-2012 Median	Decrease	Decrease	Decrease	Decrease	Decrease	Increase
2012-2013 Trend	Decrease	Decrease	Decrease	Decrease	Increase	Increase
Target-Thresh.	Between	Between	Between	Between	Above	Between
Market Abundance						
2013 Percentile	Not Incl.	0.65	0.57	0.39	0.61	0.52
2008-2012 Median	Decrease	Decrease	Decrease	Decrease	Decrease	Increase
2012-2013 Trend	Decrease	Decrease	Decrease	Decrease	Increase	Increase
Target-Thresh.	Between	Above	Above	Between	Above	Above
Recruitment						
2013 Percentile	Not Incl.	0.74	0.38	0.46	0.34	0.62
2008-2012 Median	Increase	Increase	Decrease	Increase	Decrease	Increase
2012-2013 Trend	Increase	Increase	Decrease	Decrease	Decrease	Decrease
Mortality						
Rate	0.08	0.11	0.25	0.23	0.24	0.16
2013 Percentile	Not Incl.	0.50	0.94	0.66	0.70	0.14
2008-2012 Median	Decrease	Decrease	Increase	Increase	Increase	Decrease
2012-2013 Trend	Decrease	Decrease	Increase	Decrease	Decrease	Decrease
Dermo						
Weighted Prevalence	0.05	0.37	1.96	1.74	2.23	2.21
2013 Percentile	Not Incl.	0.68	0.87	0.40	0.73	0.27
2008-2012 Median	Decrease	Decrease	Decrease	Decrease	Increase	Increase
2012-2013 Trend	Increase	Decrease	Decrease	Increase	Decrease	Increase

Table 13. Transplant region projections for intermediate transplanting in 2014. Cullers are used for these transplants. Exploitation rate and numbers to be removed are based on all oyster size classes. The estimated number of bushels to be moved is derived from the mean of the number of oysters per bushel for these regions from the 2013 intermediate transplant program or other as noted.¹ The proportion of oysters available for market is estimated based on the fraction of oysters ≥ 2.5 " converted to bushels using the average 264 oysters/bu derived from the 2004-2013 port-sampling program. Percentiles for the VLM and LM use the exploitation reference points for the MMT (see text for details). Footnotes identify alternatives available under specified conditions. Arrows indicate SARC-recommended options in each region.

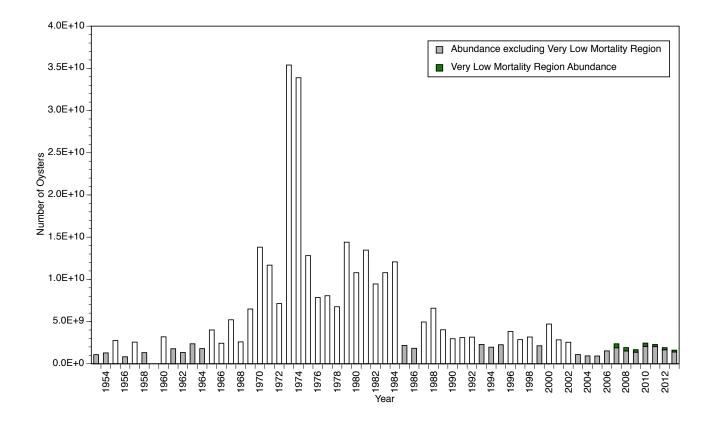
		Exploit.	Number of Oys	Deckload	Transpl.	Mkt.Equiv.
Region	Percentile	Rate	Removed	Oys / bu	Bushels	Bushels
Very Low	25^{th}	.0103	2,277,674	328	6,944	1,363
Mortality ²	40^{th}	.0127	2,808,394	328	8,562	1,681
-	50^{th}	.0188	4,157,307	328	12,675	2,488
	60^{th}	.0233	5,152,407	328	15,709	3,084
Low	$\rightarrow 25^{\text{th}}$.0103	2,830,895	404	7,007	3,742
Mortality ³	$\rightarrow 40^{\text{th}}$.0127	3,490,521	404	8,640	4,614
5	$\rightarrow 50^{\text{th}}$.0188	5,167,070	404	12,790	6,831
	$\rightarrow 60^{\text{th}}$.0233	6,403,869	404	15,851	8,466
Medium	$\rightarrow 25^{\text{th}}$.0103	1,554,916	262	5,935	2,662
Mortality	$\rightarrow 40^{\text{th}}$.0127	1,917,226	262	7,318	3,283
Transplant ⁴	$\rightarrow 50^{\text{th}}$.0188	2,838,098	262	10,832	4,859
	$\rightarrow 60^{\text{th}}$.0233	3,517,430	262	13,425	6,022

¹ Oysters/Bu taken from 2013 intermediate transplant samples; actual numbers for 2014 may not be similar. Because of this, Transplant Bushels for 2014 intermediate transplant will differ, perhaps by a lot. VLM projection based on 550 bushels transplanted from Liston Range in April, 2013.

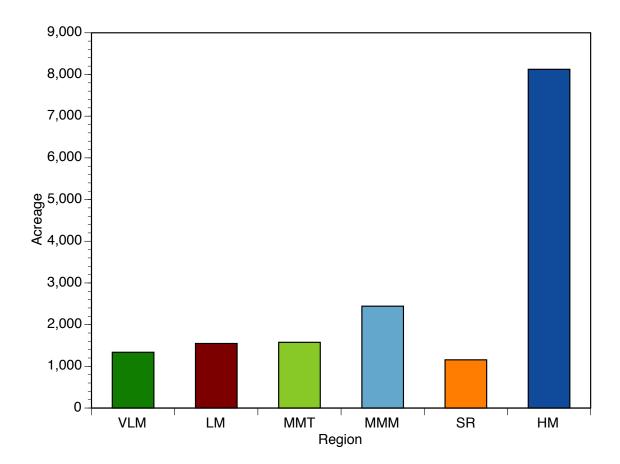
² The SARC recommended closure of the VLM region for 2014 to allow its continued recovery from the 2011 mortality event.

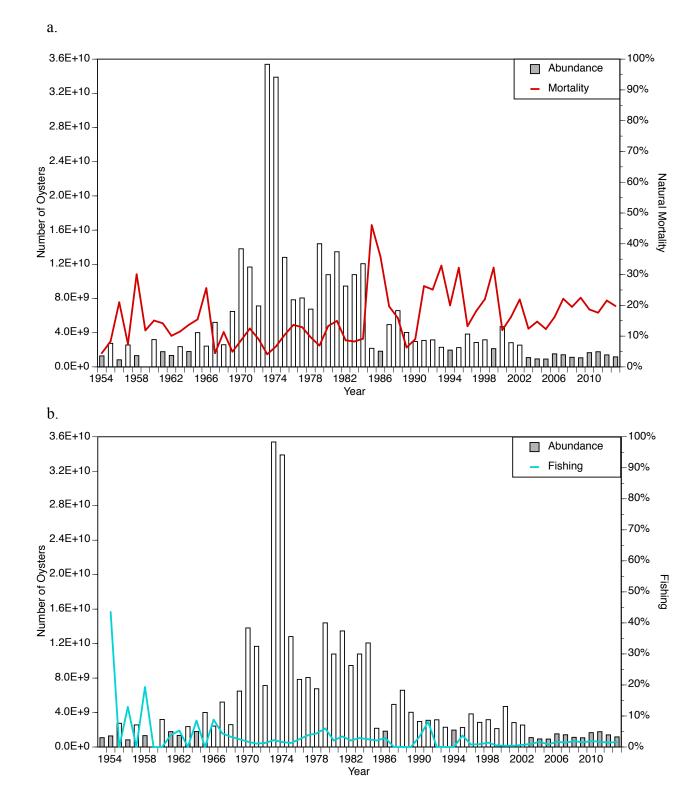

³ The SARC recommends that transplant from the LM region alternate beds each year and that the 2014 transplant goes to Ship John in the MMM region.

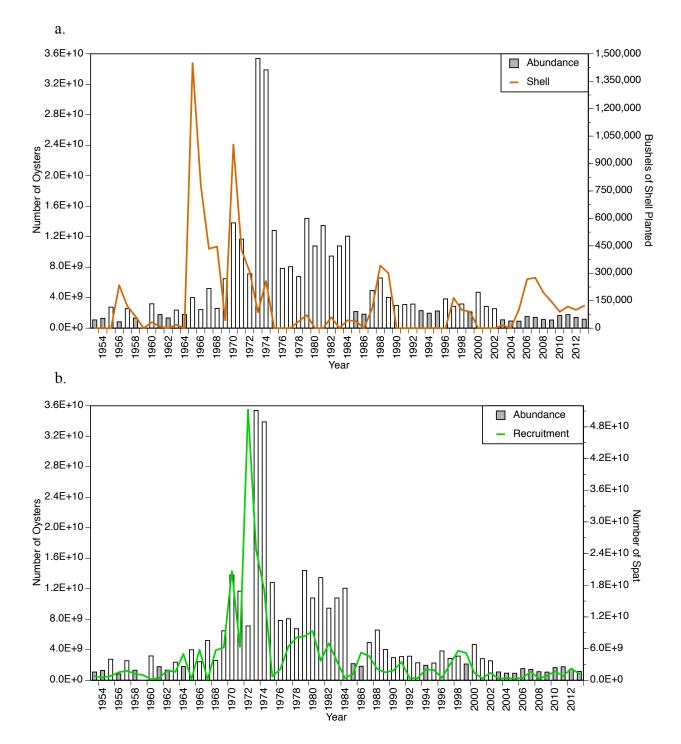
⁴ The SARC recommends that no more than 50% of the transplant from the MMT region come from Middle in any year and that the 2014 transplant goes to SR.

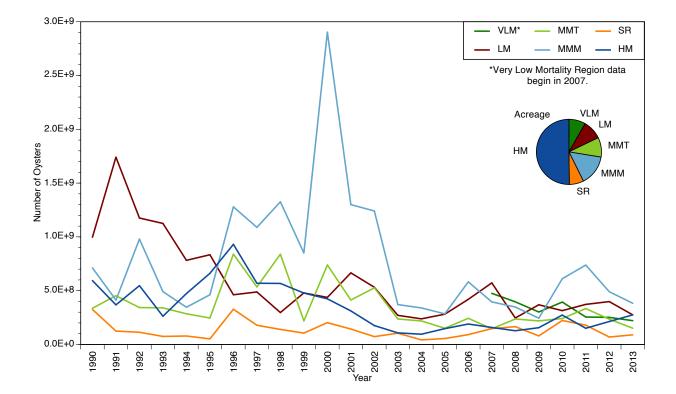

Table 14. Allocation projections for direct marketing on the High Mortality, Shell Rock, and Medium Mortality Market regions in 2014. Exploitation rates and numbers to be removed are based on the abundance of ≥ 2.5 oysters in each region. Projections use the average oysters per marketed bushel (264) derived from the 2004-2013 port-sampling program. Arrows indicate SARC-recommended options. Shaded percentiles require that intermediate transplant must occur.

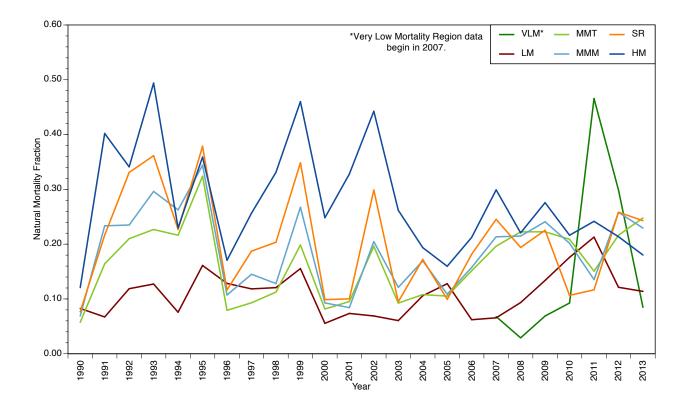
<u>Region</u> Medium Mortality Market (Ship John & Cohansey)	$\frac{\text{Percentile}}{\Rightarrow 25^{\text{th}}}$ $\Rightarrow 40^{\text{th}}$ $\Rightarrow 50^{\text{th}}$ $\Rightarrow 60^{\text{th}}$ $\Rightarrow 75^{\text{th}}$ 100^{th}	Exploitation <u>Rate</u> .0154 .0178 .0214 .0267 .0328 .0398	Number of Oysters <u>Removed</u> 2,275,146 2,629,714 3,161,567 3,944,572 4,845,766 5,879,924	Direct-Market <u>Bushels</u> 8,618 9,961 11,976 14,942 18,355 22,272
Shell Rock	$ \begin{array}{c} \rightarrow 25^{\text{th}} \\ \rightarrow 40^{\text{th}} \\ \rightarrow 50^{\text{th}} \\ \hline \rightarrow 60^{\text{th}} \\ 75^{\text{th}} \end{array} $.0531 .0870 .0880 .1140 .1586	1,936,036 3,172,036 3,208,496 4,156,462 5,782,586	7,334 12,015 12,153 15,744 21,904
High Mortality	$ \begin{array}{c} \rightarrow 25^{\text{th}} \\ \rightarrow 40^{\text{th}} \\ \rightarrow 50^{\text{th}} \\ \rightarrow 60^{\text{th}} \\ \rightarrow 75^{\text{th}} \end{array} $.0095 .0122 .0652 .0782 .0827	592,763 761,232 4,068,226 4,879,374 5,160,157	2,245 2,884 15,410 18,483 19,546

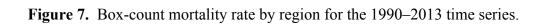

Figure 1. The natural oyster beds of Delaware Bay, NJ and their regional designations. The 23 oyster beds are grouped into six regions based on the estuarine gradient of salinity that influences growth, disease, and mortality rates. Dark green, Very Low Mortality; yellow, Low Mortality; light green, Medium Mortality Transplant; light blue, Medium Mortality Market; orange, Shell Rock; dark blue, High Mortality. Bed footprints include grids from the High and Medium quality strata. Strata designation described in main document. Each grid is 0.2" latitude x 0.2" longitude; approximately 25 acres (101,175 m² or 10.1 hectares).

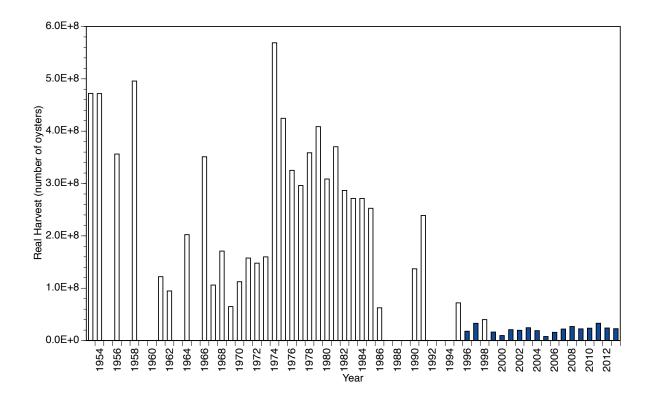

Figure 2. Abundance of oysters on the oyster beds of Delaware Bay, NJ for the entire time series of stock surveys (1953–2013). Until 2007, the three most upbay beds that comprise the Very Low Mortality Region (see Figure 1) were not included in the annual surveys and therefore they are not included in most of the whole stock analyses.

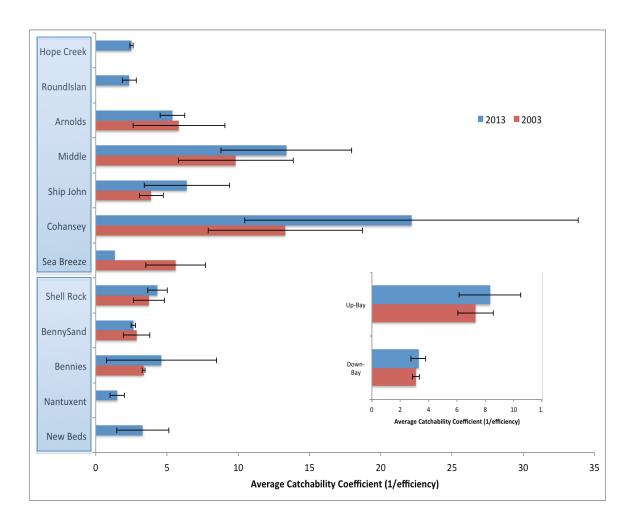

Figure 3. Acreage of the six bed regions. From upbay to downbay: Very Low Mortality (VLM), Low Mortality (LM), Medium Mortality Transplant (MMT), Medium Mortality Market (MMM), Shell Rock (SR), High Mortality (HM). Total Acreage: 16,184 acres.

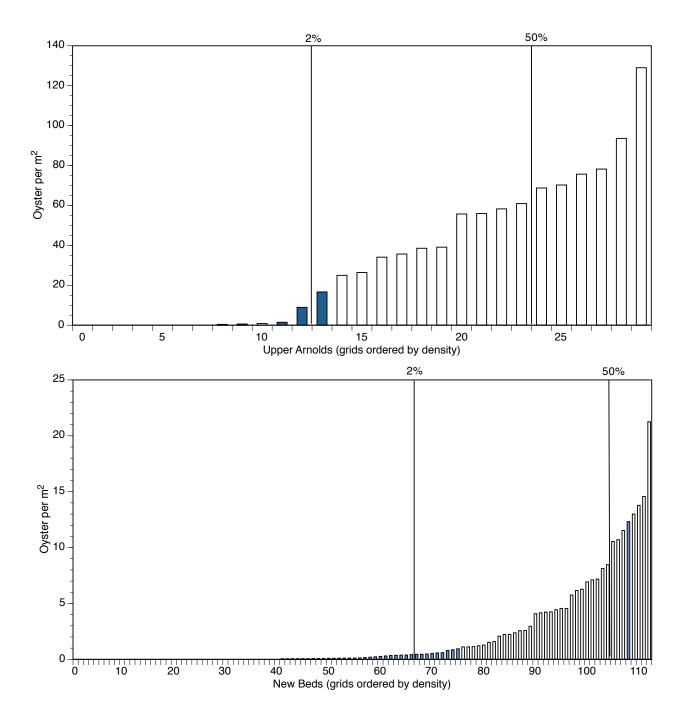

Figure 4. Box-count mortality rates (**a**) and fishing exploitation rates (**b**) compared to total abundance of oysters on the oyster beds of Delaware Bay, NJ, excluding the Very Low Mortality region, for the entire time series of stock surveys (1954–2013).

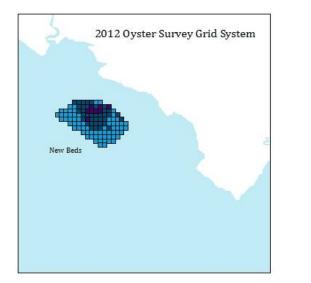


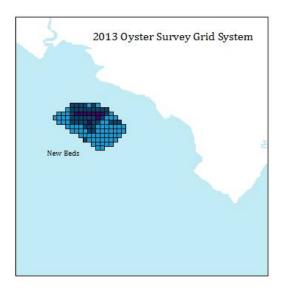

Figure 5. Bushels of shell planted for spat recruitment (**a**) and number of spat from the stock assessment time series (**b**) compared to total abundance of oysters on the oyster beds of Delaware Bay, NJ, excluding the Very Low Mortality region, for the entire time series of stock surveys (1953–2013).

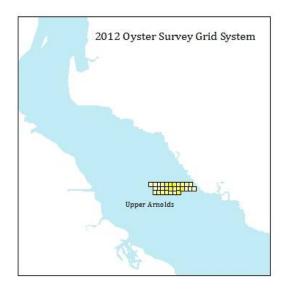

Figure 6. Oyster abundance by region for the 1990–2013 survey time series (lines). Relative acreage of each region shown in pie chart. Acreage includes only the high and medium quality strata footprint for each bed from the 2013 survey. Regions are color-coded as in Figure 1. From upbay to downbay: Very Low Mortality (VLM); Low Mortality (LM); Medium Mortality Transplant (MMT); Medium Mortality Market (MMM); Shell Rock (SR); High Mortality (HM).




Figure 8. Number of oysters harvested from the natural oyster beds of Delaware Bay, NJ from 1953–2013. Prior to 1996, the bay-season fishery removed oysters from the natural beds and transplanted them downbay to leased grounds. The direct-market fishery began in 1996. In 1997, an intermediate transplant program began. Zeros represent years of fishery closure.


Figure 9. Mean catchability coefficient (q=1/efficiency) and standard error of the mean estimated from dredge efficiency experiments conducted in 2003 and 2013. Shaded boxes on the y-axis group beds into "Up-Bay" and "Down-Bay" sections. *Inset*: Mean catchability coefficient and standard error of the mean for data grouped by bay section.




Figure 10. Relationship of cumulative oyster abundance versus density for grids ordered by increasing abundance on Upper Arnolds and New Beds for the 2013 resurvey. The 2013 resurvey program covered all navigable grids associated with these beds. The vertical lines mark the boundaries between the Low (2%), Medium (2-50%), and High (50%) quality strata based on cumulative abundance.

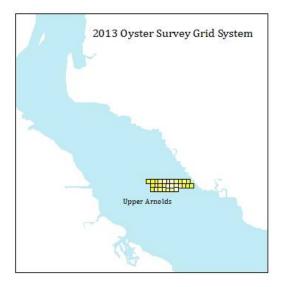
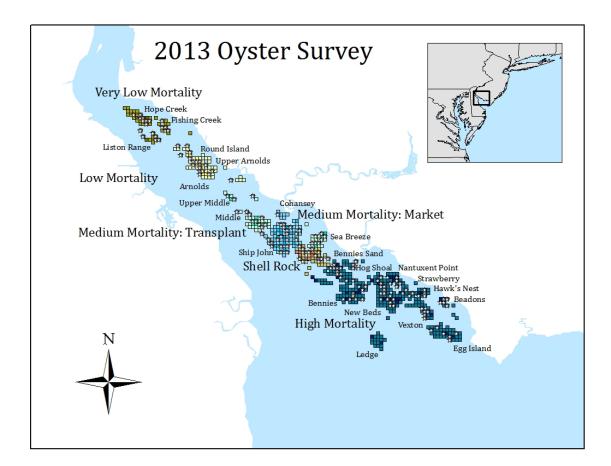
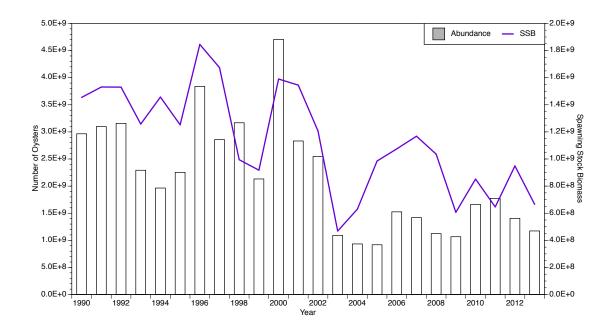
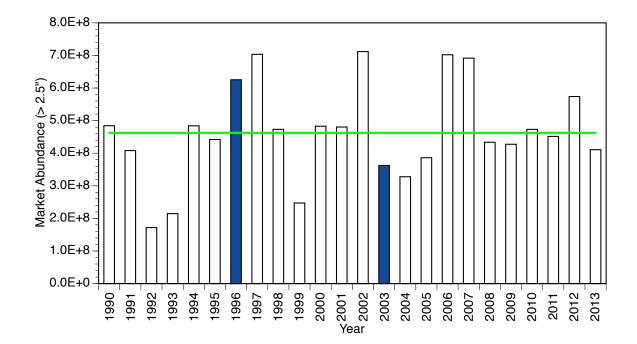


Figure 11. Distribution of grids on New Beds and Upper Arnolds in 2012 before and in 2013 after the spring 2013 resurvey shaded according to oyster density. The 2013 resurvey program covered all navigable grids associated with these beds. High-quality grids are shaded darkly, medium-quality grids are shaded an intermediate color, and low-quality grids are shaded a light color. New Beds has 112 grids and Upper Arnolds has 29 grids.






Figure 12. The natural oyster beds of Delaware Bay, NJ and their regional designations. Olive green, Very Low Mortality; yellow, Low Mortality; light green, Medium Mortality Transplant; light blue, Medium Mortality Market; orange, Shell Rock; dark blue, High Mortality. Beds included in each region are listed in Table 3. Bed footprints include grids from the High (dark shade) and Medium (light shade) quality strata. Strata designation is described in the text. Grids are 0.2" latitude x 0.2" longitude; approx. 25 acres (101,175 m² or 10.1 hectares). Bed footprints are based on resurveys beginning in 2005. Ledge and Egg Island do not have many oysters and have not been resurveyed. Sites for the 2013 stock assessment survey are indicated by white stars.

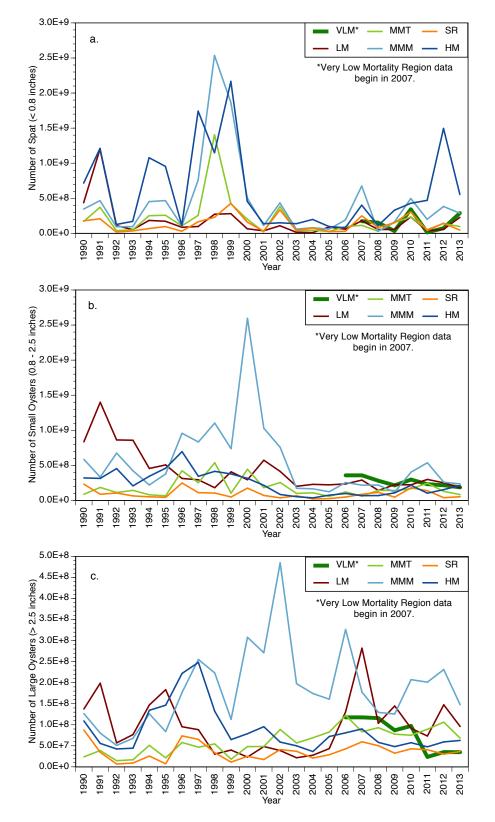
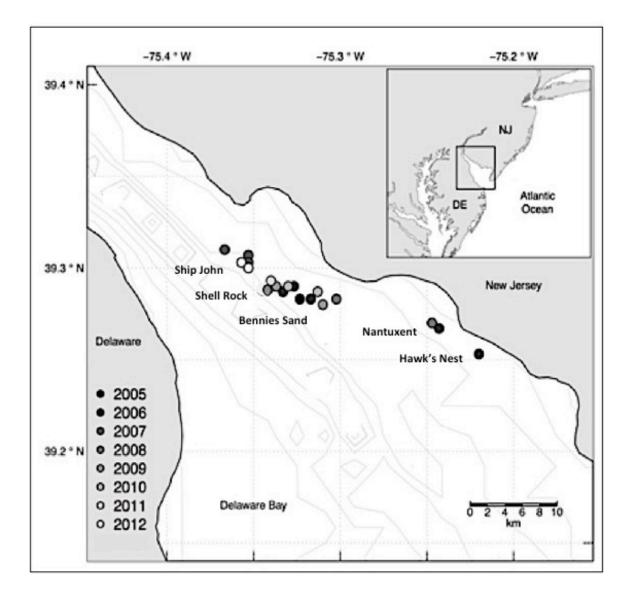
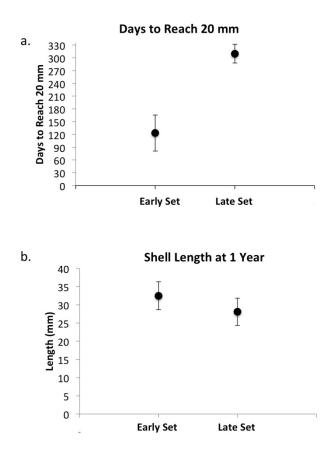
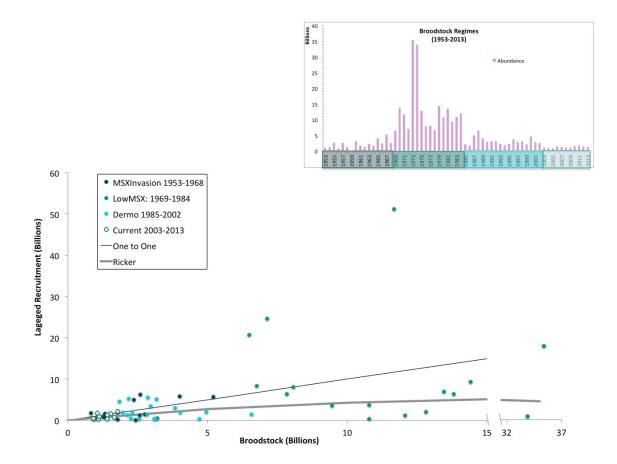
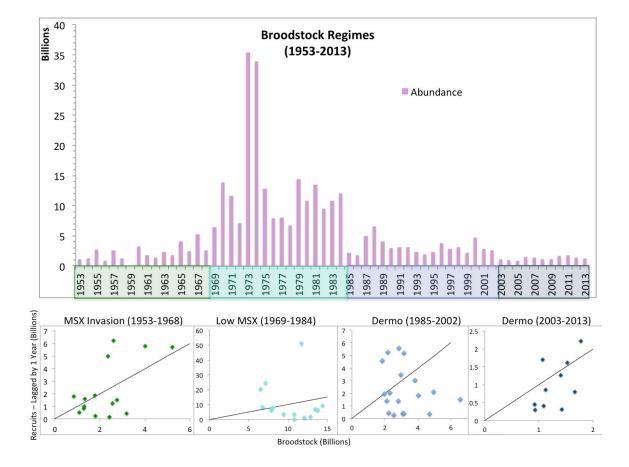

Figure 13. Total abundance of oysters >20mm on the oyster beds of Delaware Bay, NJ for the 1990–2013 time series (bars). Purple line overlay is the spawning stock biomass (SSB) which is based on oysters >35mm (right y-axis). VLM is not included in either set of data.

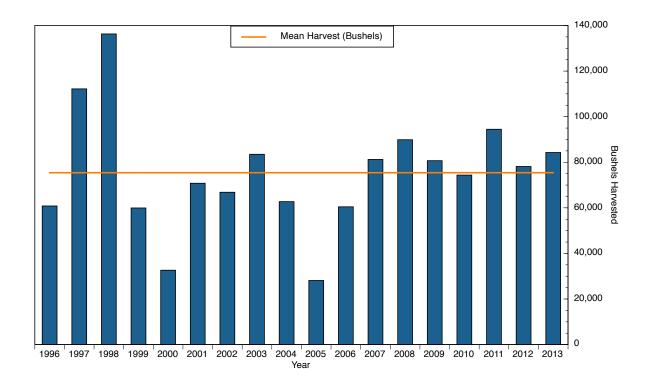
Figure 14. Number of market-size oysters (> 2.5 inches) for the 1990–2013 time series. Green line is the median value for the time series, 4.62×10^8 market-size oysters. Data from the Very Low Mortality region is not included.


Figure 15. Oyster abundance by region and size for the 1990–2013 survey time series. (a) abundance of spat (< 20 mm, 0.8"); (b) abundance of small oysters (20–63.5 mm, 0.8"–2.5"); (c) abundance of market-size oysters (> 63.5 mm, ≥ 2.5 ").


Figure 16. Estimated number of bushels of shell lost from the New Jersey oyster beds for the time period 1999–2013. Shell budgets are calculated using updated half-lives estimated in this assessment and using half-lives estimated in 2011 and 2012 for comparison.


Figure 17. Site map of shellplants from 2005 - 2012 used for the spat growth rate analysis on NJ Delaware Bay oyster beds. Shellplants included: 5 on Ship John, 7 on Shell Rock, 4 on Bennies Sand, 2 on Nantuxent, and 1 on Hawk's Nest. See Figure 12 for complete bed footprints and geographic relationship to other oyster beds.


Figure 18. Summary growth statistics for spat setting on shell planted from 2005-2012. Shell lengths of spat set on clamshell were observed monthly between March and November. Early and Late set groups were delineated from spat reaching 20mm in +/-225 days. a) The average number of days (+/-95% confidence interval) for spat to reach 20mm in each group. b) The average shell length at one year (+/-95% confidence interval) for each group.


Figure 19. Broodstock-recruitment relationships for the 1953-2013 time period for the natural oyster beds of Delaware Bay excluding the Very Low Mortality region. Broodstock-recruitment relationships in larger graph are color-coded according to abundance periods as indicated along the x-axis of the abundance time series in the inset at top. Recruitment is lagged to pair with previous year's Fall survey broodstock. The black line is 1:1; Ricker curve fit is shown as a bold line.

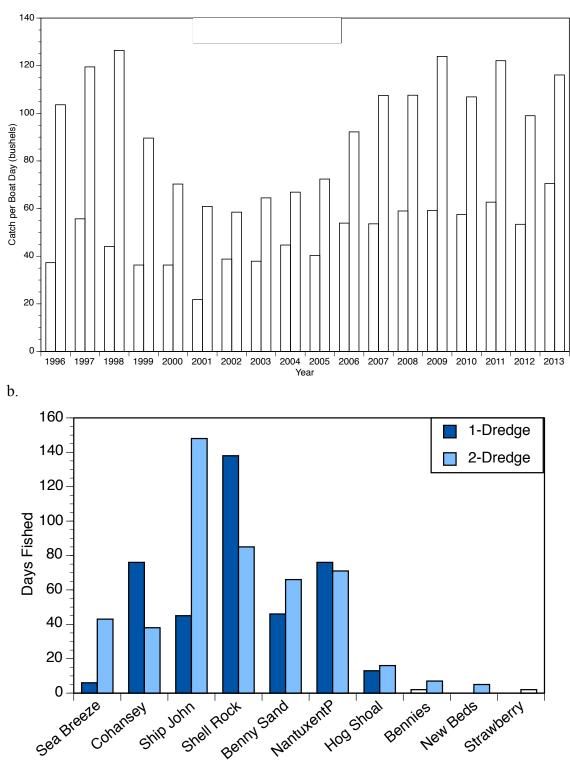

Figure 20. Broodstock regimes and broodstock-recruitment relationships for the 1953-2013 time period for the natural oyster beds of Delaware Bay excluding the Very Low Mortality region. Relationships are grouped separately in the bottom panels according to abundance periods as indicated by the colors along the x-axis of the abundance time series above. Recruitment is lagged to pair with previous year's Fall survey broodstock. Black lines are 1:1. Outliers 1959, 1973 and 1974 are not included in the lower panels.

Figure 21. Number of bushels harvested from the natural oyster beds of Delaware Bay since the inception of the direct-market program in 1996. Orange line, time-series average harvest = 75,409 bushels.

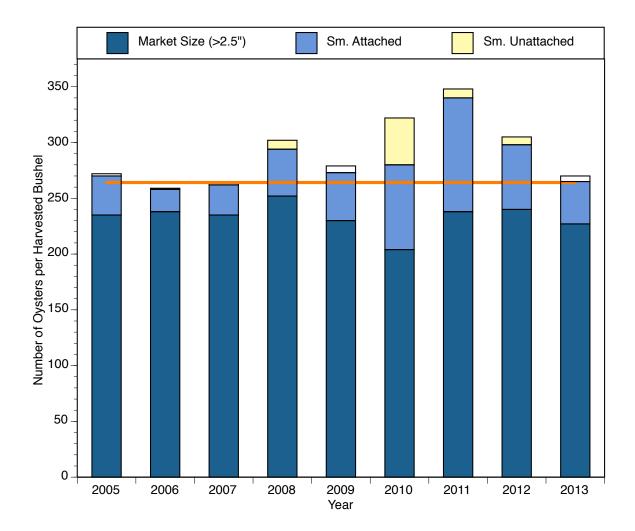
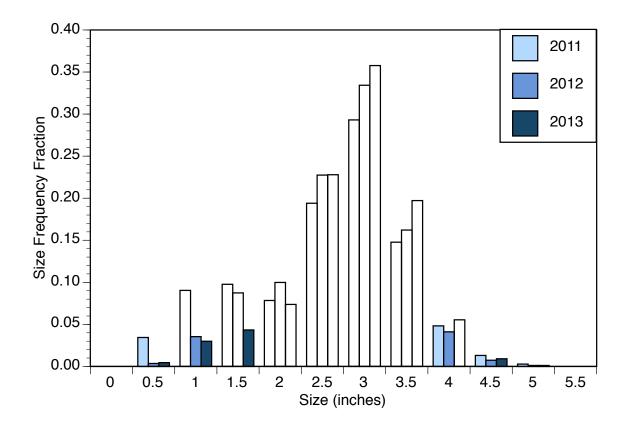
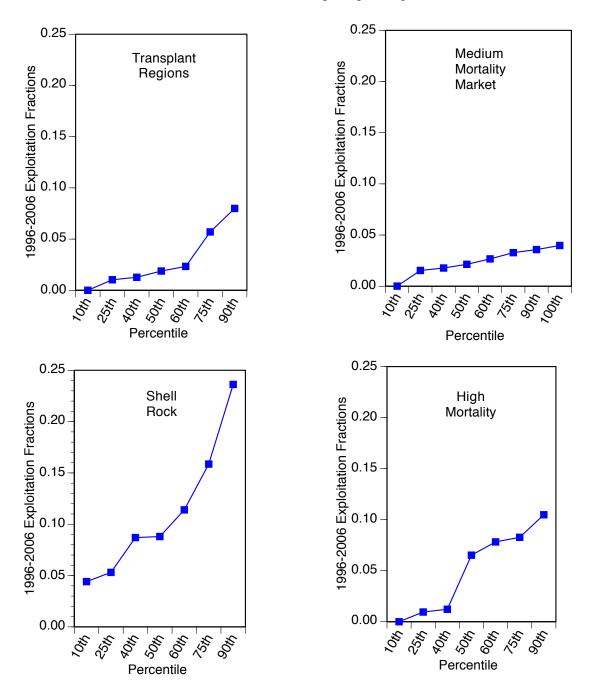
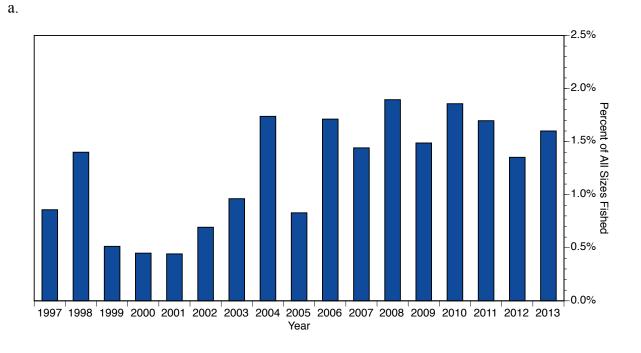


Figure 22. Catch per unit effort (CPUE) in days by one- and two-dredge boats. License consolidation in recent years has allowed one boat to fish multiple licenses. Total quota is divided by the number of licenses. (a). CPUE each year since direct marketing began on all harvested beds. (b) CPUE in boat-days on the beds fished in 2013.



a.


Figure 23. Landed oysters per bushel in three groups: market-size (>2.5"), smaller attached oysters, and smaller unattached oysters. The long-term mean number per bushel of all harvested oysters (264) is shown as an orange line.


Figure 24. Size frequency of oysters landed in 2013 compared to the size frequencies of the previous two years. Size class labels are the lower bounds of the size class.

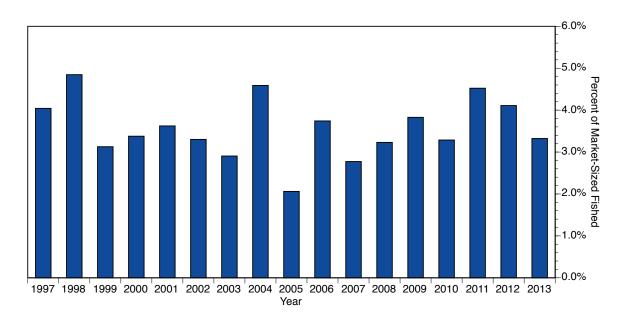
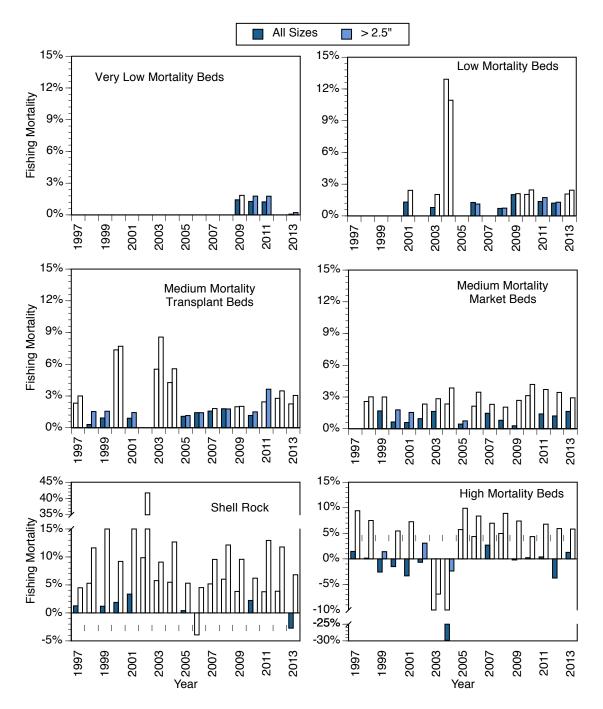
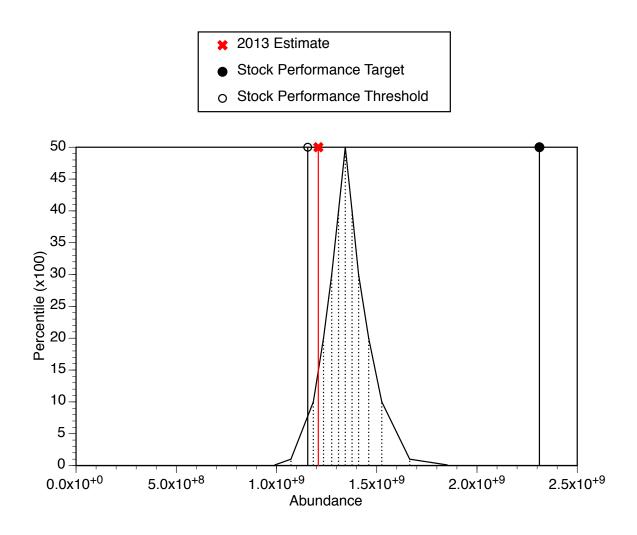

Figure 25. Exploitation rates and their percentiles used for Delaware Bay, New Jersey oyster fishery allocation decisions since 2007. SARC recommendations ca. 2006 resulted in use of the 1996-2006 decade of Direct Market exploitation as the basis for the current system of within-region, abundance-based exploitation. Limited data for the upbay regions resulted in use of one set of data for the Transplant regions. Low range of exploitation rates in the Medium Mortality Market region led to an experimental fishery at the rate associated with the 100th percentile. Limited timeframe for reference results in abrupt step changes in some cases.

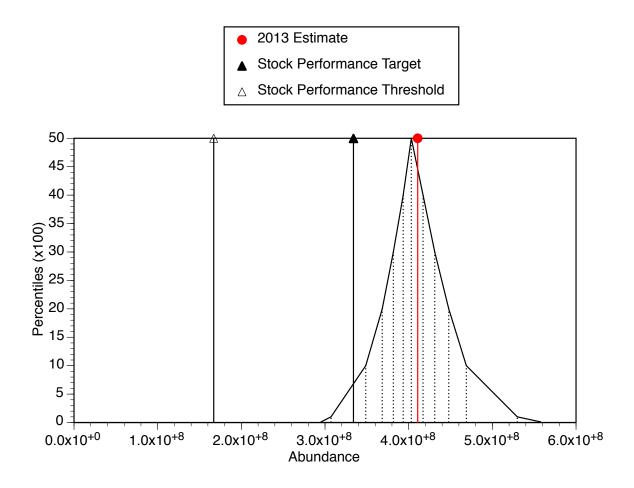
Figure 26. Fishing mortality for the 1997–2013 time period, excluding the VLM as a percentage of: a) total oyster abundance and b) market-size oyster abundance (>2.5").

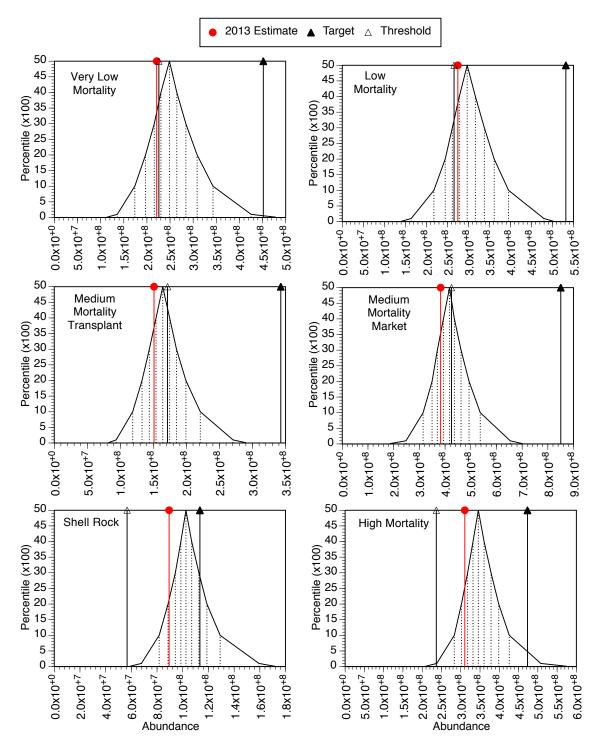


b.



71


Figure 27. Fishing mortality percentages by region during the Direct Market time series (1997-2013). Percentages reflect transplant removals from the Very Low Mortality, Low Mortality, and Medium Mortality Transplant regions and transplant additions plus direct market harvest from the Medium Mortality Market, Shell Rock, and High Mortality regions. If more oysters are transplanted to a region than are harvested, negative percentages will result. Dark bars depict the percentage fished of all oysters and light bars, the percentage fished of ≥ 2.5 " oysters. There was no exploitation of the Very Low Mortality region prior to 2009; otherwise, no bars indicate no oysters removed from the region in that year.


Figure 28. 2013 total abundance whole-stock estimate within confidence percentiles for the 2013 survey taking into account between-sample variation and uncertainty in dredge efficiency. Whole stock reference points are included for comparison. All values exclude the Very Low Mortality region. Note that the percentiles (P) above the 50th are shown as 1 - P so that, for example, the 60th percentile is indicated as the 40th percentile but on the right-hand side of the curve.

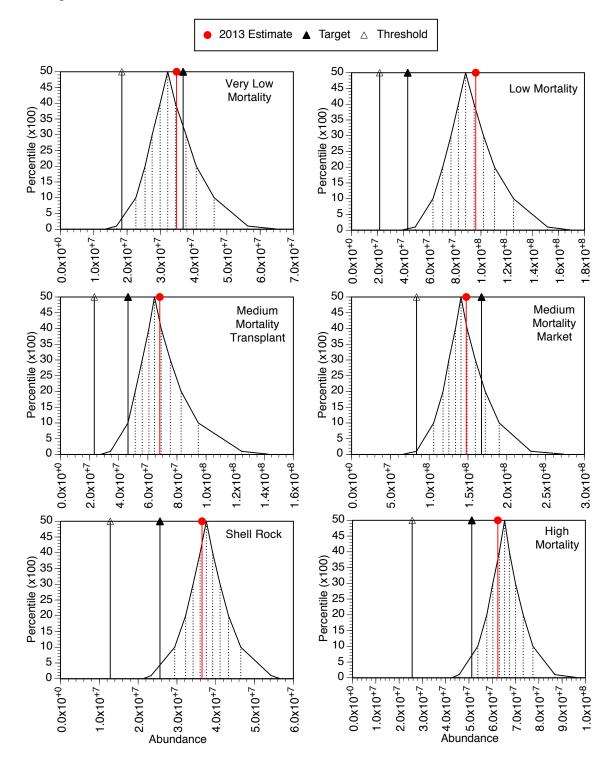

Figure 29. 2013 market-size oyster whole-stock abundance estimate within confidence percentiles for the 2013 survey taking into account between-sample variation and uncertainty in dredge efficiency. Whole stock reference points are included for comparison. All values exclude the Very Low Mortality region. Note that the percentiles (P) above the 50th are shown as 1 - P so that, for example, the 60th percentile is indicated as the 40th percentile but on the right-hand side of the curve.

Figure 30. 2013 total oyster regional abundance estimates within confidence percentiles taking into account between-sample variation and uncertainty in dredge efficiency. Reference points are included for comparison. Note that the percentiles (P) above the 50th are shown as 1 - P so that, for example, the 60th percentile is indicated as the 40th percentile but on the right-hand side of the curve.

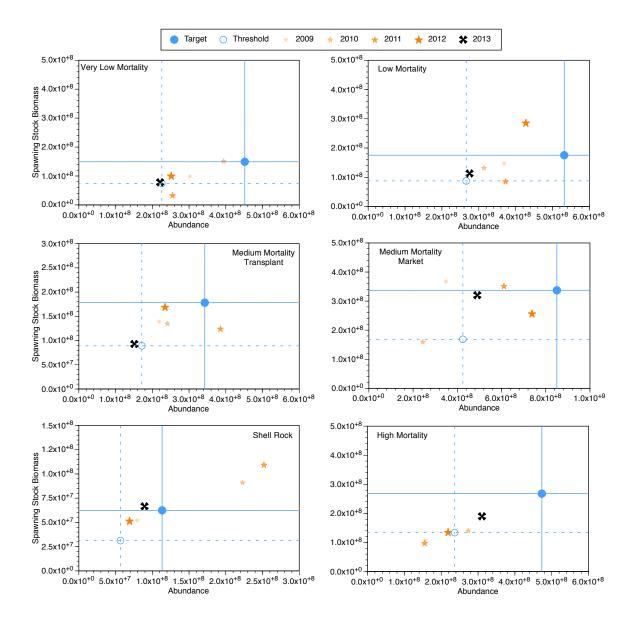
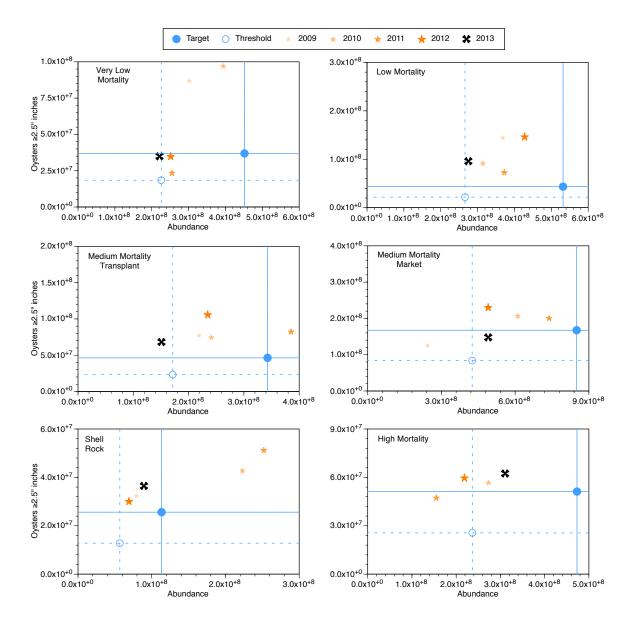


Figure 31. 2013 market-size oyster abundance estimates by region within confidence percentiles taking into account between-sample variation and uncertainty in dredge efficiency. Reference points are included for comparison. Note that the percentiles (P) above the 50^{th} are shown as 1 - P so that, for example, the 60^{th} percentile is indicated as the 40^{th} percentile but on the right-hand side of the curve.



76

Figure 32. Position of the oyster stock 2009–2013 with respect to targets and thresholds of regional abundance and biomass. The target is taken as the median of abundance or biomass from the 1989–2005 (1990–2005) time period. The threshold is taken as half these values.

Figure 33. Position of the oyster stock in 2009–2013 with respect to targets and thresholds of regional abundance and market-size abundance (≥ 2.5 "). The target is taken as the median of abundance or market abundance from the 1989–2005 (1990–2005) time period. The threshold is taken as half these values.

Appendix A. Density data by sampled grid from Fall surveys (stock assessment) and Spring resurveys (bed stratification) for 2011-2013. Data year indicates the year with which survey sample data is associated, eg. Spring resurvey data are biologically closer to the previous Fall survey data. In cases where a grid is sampled in both Spring and Fall, the Fall survey data is used. Grids that were sampled in the Fall survey are in **bold**. Quality identifies the stratum to which a grid is assigned: 1 = High; 2 = Medium; 3 = Low; 4 = Enhanced. Enhanced grids are those that have received transplants in the current year or shellplants in the current or preceding two years. Each bed gets fully surveyed (all grids sampled) once a decade so grid quality designations may change over time (see report text). The Fall survey does not sample grids designated as Low quality (see report text). The data are arranged by year from upbay to downbay and highest to lowest oyster per m² within each bed.

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2011	Nov-11	VLM	Hope Creek	86	2	79.329	3.669	13.140
2011	Nov-11	VLM	Hope Creek	63	1	74.649	2.774	14.159
2011	Nov-11	VLM	Hope Creek	64	1	74.214	4.252	11.313
2011	Nov-11	VLM	Hope Creek	61	1	74.035	3.524	8.524
2011	Nov-11	VLM	Hope Creek	76	1	71.339	2.693	9.896
2011	Nov-11	VLM	Hope Creek	84	2	55.171	2.852	3.855
2011	Nov-11	VLM	Hope Creek	55	2	50.199	3.709	8.256
2011	Nov-11	VLM	Hope Creek	46	2	0.193	0	0.043
2011	Nov-11	VLM	Liston Range	24	1	133.080	15.513	11.861
2011	Nov-11	VLM	Liston Range	17	2	44.264	3.056	2.092
2011	Nov-11	VLM	Liston Range	23	2	18.554	1.187	1.849
2011	Nov-11	VLM	Liston Range	25	2	10.655	1.391	0.668
2011	Nov-11	VLM	Liston Range	21	1	8.155	0.480	0.588
2011	Nov-11	VLM	Liston Range	22	2	5.917	0.185	1.417
2011	Nov-11	VLM	Fishing Creek	25	1	108.279	3.347	11.480
2011	Nov-11	VLM	Fishing Creek	4	2	93.301	2.292	11.087
2011	Nov-11	VLM	Fishing Creek	5	2	33.564	1.626	7.780
2011	Nov-11	VLM	Fishing Creek	16	1	19.069	0.970	5.907
2011	Nov-11	VLM	Fishing Creek	8	2	7.088	0	1.479
2011	Nov-11 Nov-11	LM LM	Round Island Round Island	26 25	1 2	176.458 91.746	12.402 8.030	11.587 7.986
2011 2011	Nov-11 Nov-11	LM LM	Round Island	25 12	2 1	91.746 84.908	8.030 7.469	11.885
2011 2011	Nov-11 Nov-11	LM	Round Island	5	1 2	32.335	2.216	2.859
2011	Nov-11 Nov-11	LM	Round Island	3 4	2	0.188	0	0.342
2011	Nov-11 Nov-11	LM	Upper Arnolds	8	2	89.482	0 7.929	12.056
2011	Nov-11 Nov-11	LM	Upper Arnolds	18	1	81.248	8.002	8.531
2011	Nov-11	LM	Upper Arnolds	5	1	79.395	5.459	4.657
2011	Nov-11	LM	Upper Arnolds	13	2	32.666	5.599	11.357
2011	Nov-11	LM	Upper Arnolds	21	2	13.556	1.744	0.995
2011	Nov-11	LM	Arnolds	7	1	159.254	16.182	7.756
2011	Nov-11	LM	Arnolds	16	1	140.622	13.129	6.821
2011	Nov-11	LM	Arnolds	17	1	123.645	8.963	4.877
2011	Nov-11	LM	Arnolds	19	2	46.482	5.316	13.309
2011	Nov-11	LM	Arnolds	72	2	25.012	5.229	12.178
2011	Nov-11	LM	Arnolds	26	2	8.337	1.266	1.183
2011	Nov-11	MMT	Upper Middle	48	1	110.174	8.294	15.230
2011	Nov-11	MMT	Upper Middle	36	2	10.906	0.913	3.338
2011	Nov-11	MMT	Upper Middle	56	2	2.175	0	1.455
2011	Nov-11	MMT	Upper Middle	49	2	1.428	0.224	2.660
2011	Oct-11	MMT	Middle	28	1	154.080	53.344	9.220
2011	0ct-11	MMT	Middle	35	1	70.432	16.733	2.200
2011	0ct-11	MMT	Middle	21	2	64.541	6.747	14.126
2011	0ct-11	MMT	Middle	38	1	41.771	6.816	10.944
2011	Oct-11	MMT	Middle	41	2	26.019	6.373	4.938
2011	Oct-11	MMT MMT	Middle	51	2	18.485	3.759	5.238 9.043
2011	Oct-11	MMT MMT	Middle	1	2	16.566	2.807	
2011 2011	Nov-11 Oct-11	MMT MMT	Middle Sea Breeze	26 18	4 1	13.250 169.619	$1.186 \\ 60.415$	3.442 20.315
2011 2011	Jun-12	MMT	Sea Breeze	30	1 2	145.397	12.191	20.315
2011 2011	Jun-12 Jun-12	MMT	Sea Breeze	30 14	2	139.575	5.713	8.444
2011	Oct-11	MMT	Sea Breeze	14	2	133.638	28.530	5.207
2011	May-12	MMT	Sea Breeze	36	2	125.190	10.742	3.651
2011	Jun-12	MMT	Sea Breeze	31	2	120.096	5.715	10.120
2011	Jun-12	MMT	Sea Breeze	19	1	118.331	13.933	25.978
2011	Jun-12	MMT	Sea Breeze	17	2	117.015	6.507	8.108
	,				-			

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2011	Jun-12	MMT	Sea Breeze	20	2	114.719	5.105	4.549
2011	Jun-12	MMT	Sea Breeze	22	1	114.454	4.480	6.513
2011	Jun-12	MMT	Sea Breeze	23	3	72.585	6.235	4.809
2011	0ct-11	MMT	Sea Breeze	13	2	59.732	14.269	12.577
2011	0ct-11	MMT	Sea Breeze	24	1	47.544	5.604	6.407
2011	Jun-12	MMT	Sea Breeze	25	2	39.887	2.920	4.413
2011	May-12	MMT	Sea Breeze	37	2	32.934	2.312	4.830
2011	Jun-12	MMT	Sea Breeze	39	3	17.449	0	3.157
2011	0ct-11	MMT	Sea Breeze	16	1	16.896	4.117	8.894
2011	May-12	MMT	Sea Breeze	38	2	13.366	3.310	3.382
2011	May-12	MMT	Sea Breeze	46	3	12.781	1.737	1.131
2011	Jun-12	MMT	Sea Breeze	26	2	8.742	0.990	7.569
2011	Jun-12	MMT	Sea Breeze	29	2	8.045	0.226	3.188
2011	May-12	MMT	Sea Breeze	48	3	5.161	0	5.460
2011	Jun-12	MMT	Sea Breeze	33	3	4.226	0.661	6.500
2011	Jun-12	MMT	Sea Breeze	34	3	4.202	0	6.903
2011	Jun-12	MMT	Sea Breeze	32	3	3.460	0	1.123
2011	Jun-12	MMT	Sea Breeze	12	3	2.696	0.241	2.691
2011	May-12	MMT	Sea Breeze	47	3	2.111	0	2.422
2011	Jun-12	MMT	Sea Breeze	1	3	1.649	0	2.549
2011	May-12	MMT	Sea Breeze	35	2	1.210	0.186	0.760
2011	Jun-12	MMT	Sea Breeze	27	3	1.154	0.210	1.015
2011	Jun-12	MMT	Sea Breeze	3	3	0.907	0	0.930
2011	Jun-12	MMT	Sea Breeze	2	2	0.679	0.064	0.523
2011	Jun-12	MMT	Sea Breeze	28	3	0.672	0.180	1.271
2011	Jun-12	MMT	Sea Breeze	45	3	0.647	0.128	1.322
2011	Jun-12	MMT	Sea Breeze	11	3	0.431	0	4.760
2011	Jun-12	MMT	Sea Breeze	43	2	0.339	0	1.365
2011	Jun-12	MMT	Sea Breeze	21	3 3	0.268	0.045	0.957
2011 2011	Jun-12	MMT MMT	Sea Breeze Sea Breeze	6 8	3	0.250 0.225	0.134 0	0.703 1.733
2011	Jun-12 Jun-12	MMT	Sea Breeze	9	3	0.223	0	1.621
2011	Jun-12	MMT	Sea Breeze	5	3	0.168	0	0.473
2011	Jun-12	MMT	Sea Breeze	42	3	0.162	0	1.068
2011	Jun-12	MMT	Sea Breeze	44	3	0.102	0	0.354
2011	Jun-12	MMT	Sea Breeze	10	1	0.075	0	2.131
2011	Jun-12	MMT	Sea Breeze	4	3	0	0	0.046
2011	Jun-12	MMT	Sea Breeze	7	3	0	0.093	0.329
2011	Jun-12	MMT	Sea Breeze	40	3	0	0	0.096
2011	May-12	MMT	Sea Breeze	41	3	0	0	0
2011	0ct-11	MMM	Ship John	25	1	192.446	77.909	9.862
2011	Oct-11	MMM	Ship John	18	2	181.692	48.234	12.677
2011	0ct-11	MMM	Ship John	31	1	147.975	61.533	6.073
2011	Oct-11	MMM	Ship John	33	1	132.608	59.434	6.584
2011	0ct-11	MMM	Ship John	15	1	113.926	17.575	9.631
2011	0ct-11	MMM	Ship John	42	1	110.921	51.300	3.668
2011	0ct-11	MMM	Ship John	16	1	88.536	26.017	6.494
2011	0ct-11	MMM	Ship John	8	2	68.736	13.428	9.425
2011	0ct-11	MMM	Ship John	30	2	54.911	4.351	3.019
2011	0ct-11	MMM	Ship John	57	2	11.956	51.044	16.093
2011	0ct-11	MMM	Ship John	52	2	7.665	8.253	12.435
2011	0ct-11	MMM	Cohansey	54	1	146.294	19.646	5.494
2011	0ct-11	MMM	Cohansey	50	1	144.916	18.249	6.931
2011	0ct-11	MMM	Cohansey	46	2	110.118	7.850	8.353
2011	0ct-11	MMM	Cohansey	36	1	101.892	14.872	7.066

2011 Oct-11 MMM Cohansey 44 1 79.182 7.168 3.096 2011 Oct-11 MMM Cohansey 66 2 46.404 4.335 9.822 2011 Oct-11 MMM Cohansey 3 238.506 12.034 7.645 2011 Oct-11 MMM Cohansey 33 2 27.524 2.957 7.240 2011 Oct-11 MMM Cohansey 8 2 22.161 4.697 9.192 2011 Oct-11 SR Shell Rock 23 4 106.490 44.320 9.706 2011 Oct-11 SR Shell Rock 20 1 99.509 14.193 3.427 2011 Oct-11 SR Shell Rock 21 4 81.466 5.122 2011 Oct-11 SR Shell Rock 13 2.75.668 7.595 2.450 2011 May-12 SR Shell Rock 2	Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2011 Oct-11 MMM Cohansey 43 1 54.653 4.214 4.390 2011 Oct-11 MMM Cohansey 3 2 38.506 12.034 7.645 2011 Oct-11 MMM Cohansey 65 4 33.733 2.008 2.313 2011 Oct-11 MMM Cohansey 8 2 2.2161 4.607 9.192 2011 May-12 SR Shell Rock 24 1 11.636 14.641 3.445 2011 Oct-11 SR Shell Rock 20 1 99.509 14.193 3.427 2011 Oct-11 SR Shell Rock 14 1 92.056 43.667 5.817 2011 Oct-11 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2.68.733 3.589 1.787 2011 May-12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2011 Oct-11 MMM Cohansey 43 1 54.653 4.214 4.390 2011 Oct-11 MMM Cohansey 3 2 38.506 12.034 7.645 2011 Oct-11 MMM Cohansey 65 4 33.733 2.008 2.313 2011 Oct-11 MMM Cohansey 8 2 2.2161 4.607 9.192 2011 May-12 SR Shell Rock 24 1 11.636 14.641 3.445 2011 Oct-11 SR Shell Rock 20 1 99.509 14.193 3.427 2011 Oct-11 SR Shell Rock 14 1 92.056 43.667 5.817 2011 Oct-11 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2.68.733 3.589 1.787 2011 May-12 <td< td=""><td>2011</td><td>0ct-11</td><td>МММ</td><td>Cohansev</td><td>44</td><td>1</td><td>79 182</td><td>7 168</td><td>3 096</td></td<>	2011	0ct-11	МММ	Cohansev	44	1	79 182	7 168	3 096
2011 Oct-11 MMM Cohansey 66 2 46.404 4.355 9.822 2011 Oct-11 MMM Cohansey 65 4 33.733 2.068 2.313 2011 Oct-11 MMM Cohansey 83 2 2.7524 2.957 7.240 2011 Oct-11 SR Shell Rock 24 1 111.636 14.647 9.192 2011 May-12 SR Shell Rock 23 4 106.490 44.320 9.706 2011 Oct-11 SR Shell Rock 20 1 99509 14.193 3.427 2011 Oct-11 SR Shell Rock 14 1 92.056 4.3696 5.122 2011 Oct-11 SR Shell Rock 12 4 81.496 1.0875 2.640 2011 May-12 SR Shell Rock 12 70.792 5.384 2.029 2011 May-12				-					
2011 Oct-11 MMM Cohansey 3 2 38,506 12,034 7,645 2011 Oct-11 MMM Cohansey 33 2 27,524 2.957 7,240 2011 Oct-11 MMM Cohansey 8 2 22,161 4.607 9,192 2011 Oct-11 SR Shell Rock 24 1 111.063 1.44641 3.4427 2011 Oct-11 SR Shell Rock 20 1 99,509 14.193 3.427 2011 Oct-11 SR Shell Rock 19 1 84.175 2.640 2011 Oct-11 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2 66.373 3.589 1.737 2011 May-12 SR Shell Rock 2 2 52.669 3.350 1.401 2011 May-12 SR<				-					
2011 Oct-11 MMM Cohansey 65 4 33,733 2.068 2.313 2011 Oct-11 MMM Cohansey 8 2 2.2161 4.697 9.192 2011 Oct-11 SR Shell Rock 24 1 111.636 14.641 3.445 2011 Oct-11 SR Shell Rock 23 4 106.490 4.320 9.706 2011 Oct-11 SR Shell Rock 20 1 99509 14.193 3.427 2011 Oct-11 SR Shell Rock 14 1 92.056 7.5568 7.557 2.240 2011 Oct-11 SR Shell Rock 13 2 7.5668 7.555 2.150 2011 May-12 SR Shell Rock 9 1 67.893 7.188 3.320 2011 May-12 SR Shell Rock 12 1 48.534 2.45646 3.175 0.822 <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>				-					
2011 Oct-11 MMM Cohanse'r 8 2 221.1 6.4697 9.192 2011 May-12 SR Shell Rock 24 1 111.636 14.641 3.445 2011 Oct-11 SR Shell Rock 23 4 106.490 44.320 9.706 2011 May-12 SR Shell Rock 14 1 920.50 14.193 3.427 2011 Oct-11 SR Shell Rock 14 1 92.05 43.667 5.122 2011 Oct-11 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2.667.33 7.188 3.320 2011 May-12 SR Shell Rock 4 2 5.968 3.355 1.401 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.862 2011 May-12									
2011 May-12 SR Shell Rock 24 1 111.636 14.641 3.445 2011 Oct-11 SR Shell Rock 23 2 110.931 24.029 7.265 2011 May-12 SR Shell Rock 20 1 99.509 14.193 3.427 2011 Oct-11 SR Shell Rock 19 1 84.175 3.4667 5.817 2011 Oct-11 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2 68.733 3.589 1.787 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 <t< td=""><td>2011</td><td>Oct-11</td><td>MMM</td><td>Cohansey</td><td>33</td><td>2</td><td>27.524</td><td>2.957</td><td>7.240</td></t<>	2011	Oct-11	MMM	Cohansey	33	2	27.524	2.957	7.240
2011 Ort-11 SR Shell Rock 15 2 11.031 24.029 7.265 2011 Ort-11 SR Shell Rock 20 1 99.509 44.320 9.706 2011 Ort-11 SR Shell Rock 14 1 92.056 43.696 5.122 2011 Ort-11 SR Shell Rock 14 1 92.056 43.696 5.122 2011 Ort-11 SR Shell Rock 13 2 7.668 7.595 2.150 2011 May-12 SR Shell Rock 1 4 81.486 1.0875 2.400 2011 May-12 SR Shell Rock 2 2.68.733 3.589 1.787 2011 May-12 SR Shell Rock 4 2 59.486 3.355 1.401 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12	2011	0ct-11	MMM	Cohansey	8	2	22.161	4.697	9.192
2011 Oct-11 SR Shell Rock 23 4 106.490 44.320 9.706 2011 Oct-11 SR Shell Rock 14 1 92.056 43.696 5.122 2011 Oct-11 SR Shell Rock 19 1 84.175 34.667 5.817 2011 Oct-11 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2 68.733 3.589 1.787 2011 May-12 SR Shell Rock 9 1 67.7893 7.188 3.320 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 11 4 44.558 0.846 2.209 2011	2011	May-12	SR	Shell Rock	24	1	111.636	14.641	3.445
2011 May-12 SR Shell Rock 20 1 99.099 14.193 3.427 2011 Oct-11 SR Shell Rock 14 1 99.2056 43.696 5.122 2011 Oct-11 SR Shell Rock 19 1 84.175 5.467 2011 May-12 SR Shell Rock 21 4 81.486 10.875 2.460 2011 May-12 SR Shell Rock 5 2 70.792 5.384 2.029 2011 May-12 SR Shell Rock 9 1 67.893 7.188 3.320 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.822 2011 May-12 SR Shell Rock 11 4 44.538 10.545 2.209 2011 May-12 SR </td <td></td> <td>0ct-11</td> <td></td> <td>Shell Rock</td> <td></td> <td>2</td> <td>110.931</td> <td>24.029</td> <td></td>		0ct-11		Shell Rock		2	110.931	24.029	
2011 Ort-11 SR Shell Rock 14 1 92.05 43.666 5.122 2011 Oct-11 SR Shell Rock 12 4 81.475 34.667 5.817 2011 May-12 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 13 2 76.668 7.595 2.150 2011 May-12 SR Shell Rock 2 2 68.733 3.589 1.787 2011 May-12 SR Shell Rock 4 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 11 4 44.558 10.545 2.209 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 May									
2011 Oct-11 SR Shell Rock 19 1 84.175 34.667 5.817 2011 Oct-11 SR Shell Rock 13 2 75.666 7.595 2.150 2011 May-12 SR Shell Rock 13 2 75.667 7.595 2.150 2011 May-12 SR Shell Rock 2 2 68.733 3.589 1.787 2011 May-12 SR Shell Rock 9 1 67.893 7.188 3.320 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 58 2 44.730 2.930 3.951 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 May-12 SR Shell Rock 10 1 33.172 1.292 0.750 2011 May-		-							
2011 0ct-11 SR Shell Rock 21 4 81.486 10.875 2.640 2011 May-12 SR Shell Rock 13 2 75.668 7.995 2.150 2011 May-12 SR Shell Rock 2 2.667.33 3.589 1.787 2011 May-12 SR Shell Rock 9 1 67.893 7.188 3.320 2011 May-12 SR Shell Rock 4 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 62 2 52.689 3.999 4.886 2011 May-12 SR Shell Rock 12 1 44.558 10.545 2.209 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 May-12 SR Shell Rock 32 1 41.714 2.7775 6.611 2011 May-12									
2011 May-12 SR Shell Rock 13 2 75.668 7.595 2.150 2011 May-12 SR Shell Rock 5 2 68.733 3.589 1.787 2011 Oct-11 SR Shell Rock 9 1 67.893 7.188 3.320 2011 May-12 SR Shell Rock 4 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 62 2 52.669 3.999 4.886 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 11 4 44.558 10.545 2.209 2011 Oct-11 SR Shell Rock 17 2 43.603 8.999 1.723 2011 May-12 SR Shell Rock 10 1 33.172 1.292 0.750 2011 May-1									
2011 May-12 SR Shell Rock 5 2 70.792 5.384 2.029 2011 May-12 SR Shell Rock 2 2 68.733 3.589 1.787 2011 May-12 SR Shell Rock 4 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 4 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 12 4 44.558 10.545 2.209 2011 May-12 SR Shell Rock 12 41.714 27.775 6.611 2011 Oct-11 SR Shell Rock 12 2.9702 5.092 3.006 2011 May-12 SR Shell Rock 1 2.39.867 3.770 0.846 2011 May-12 SR Shell Rock									
2011 May-12 SR Shell Rock 2 2 68,733 3,589 1,787 2011 Oct-11 SR Shell Rock 9 1 67,893 7,188 3,320 2011 May-12 SR Shell Rock 4 2 59,868 3,355 1,401 2011 May-12 SR Shell Rock 62 2 52,669 3,999 4,866 2011 May-12 SR Shell Rock 12 1 48,533 2,815 0,809 2011 May-12 SR Shell Rock 58 2 44,730 2,930 3,951 2011 Oct-11 SR Shell Rock 17 2 43,603 8,999 1,723 2011 May-12 SR Shell Rock 12 29,702 5,092 3,066 2011 May-12 SR Shell Rock 1 28,010 14,444 29,333 2011 May-12 SR <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-							
2011 Ort-11 SR Shell Rock 9 1 67.893 7.188 3.320 2011 May-12 SR Shell Rock 4 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.822 2011 May-12 SR Shell Rock 11 4 44.558 10.545 2.209 2011 Oct-11 SR Shell Rock 17 2 43.603 8.999 1.723 2011 May-12 SR Shell Rock 32 1 41.714 27.775 6.611 2011 May-12 SR Shell Rock 10 1 3.3172 1.292 0.750 2011 May-12 SR Shell Rock 5 2.7753 2.149 5.854 2011 May-12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2011 May-12 SR Shell Rock 62 2 59.868 3.355 1.401 2011 May-12 SR Shell Rock 62 2 52.689 3.999 4.886 2011 May-12 SR Shell Rock 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 58 2 44.730 2.930 3.951 2011 Oct-11 SR Shell Rock 14 44.558 10.545 2.209 2011 Oct-11 SR Shell Rock 32 1 41.714 27.775 6.611 2011 May-12 SR Shell Rock 32 1 41.714 27.775 6.611 2011 May-12 SR Shell Rock 1 2 2.9702 5.092 3.006 2011 May-12 SR Shell Rock 5 3 2.7.753 2.149 5.854 2011 May-12 SR									
2011 May-12 SR Shell Rock 62 2 52.689 3.999 4.886 2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 22 24.5646 3.175 0.822 2011 May-12 SR Shell Rock 11 4 44.558 1.545 2.209 2011 Oct-11 SR Shell Rock 11 4 44.558 1.775 6.611 2011 Oct-11 SR Shell Rock 32 1 41.714 27.775 6.611 2011 May-12 SR Shell Rock 10 1 33.172 1.292 0.750 2011 May-12 SR Shell Rock 43 1 28.010 1.4484 2.933 2011 May-12 SR Shell Rock 55 3 27.753 2.149 5.654 2011 May-12 SR </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2011 May-12 SR Shell Rock 12 1 48.533 2.815 0.809 2011 May-12 SR Shell Rock 22 2 45.646 3.175 0.822 2011 May-12 SR Shell Rock 11 4 44.558 10.545 2.209 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 Oct-11 SR Shell Rock 32 1 41.714 27.75 6.611 2011 May-12 SR Shell Rock 10 1 33.172 1.292 0.750 2011 May-12 SR Shell Rock 1 28.010 14.484 2.933 2011 May-12 SR Shell Rock 5 3 27.573 2.149 5.854 2011 May-12 SR Shell Rock 5 2 20.048 2.655 0.262 2011 May-12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2011 May-12 SR Shell Rock 22 2 45.646 3.175 0.822 2011 May-12 SR Shell Rock 58 2 44.730 2.930 3.951 2011 Oct-11 SR Shell Rock 11 4 44.558 10.545 2.209 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 Oct-11 SR Shell Rock 89 2 39.867 3.770 0.846 2011 May-12 SR Shell Rock 10 1 3.172 1.292 0.750 2011 May-12 SR Shell Rock 1 2 2.9.702 5.092 3.006 2011 May-12 SR Shell Rock 5 3 2.7.53 2.149 5.854 2011 May-12 SR Shell Rock 5 2 2.0.648 2.655 0.262 2011 May-		-							
2011 May-12 SR Shell Rock 58 2 44.730 2.930 3.951 2011 Oct-11 SR Shell Rock 11 4 44.558 10.545 2.209 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 Oct-11 SR Shell Rock 89 2 39.867 3.770 0.846 2011 May-12 SR Shell Rock 10 1 33.172 1.292 0.750 2011 Oct-11 SR Shell Rock 43 1 28.010 14.484 2.933 2011 May-12 SR Shell Rock 55 3 2.7533 1.664 2.646 2011 May-12 SR Shell Rock 59 3 25.353 1.664 2.646 2011 May-12 SR Shell Rock 3 2 23.058 1.188 0.929 2011 Ma									
2011 Oct-11 SR Shell Rock 11 4 44.558 10.545 2.209 2011 May-12 SR Shell Rock 17 2 43.603 8.999 1.723 2011 Oct-11 SR Shell Rock 32 1 41.714 27.775 6.611 2011 May-12 SR Shell Rock 39 2 39.867 3.770 0.846 2011 May-12 SR Shell Rock 10 1 33.172 1.292 0.750 2011 May-12 SR Shell Rock 43 1 28010 14.484 2.933 2011 May-12 SR Shell Rock 55 3 27.753 2.149 5.854 2011 May-12 SR Shell Rock 55 2 24.140 2.627 2.089 2011 May-12 SR Shell Rock 27 2 1.048 2.655 0.262 2011 Ma									
2011May-12SRShell Rock17243.6038.9991.7232011Oct-11SRShell Rock32141.71427.7756.6112011May-12SRShell Rock89239.8673.7700.8462011May-12SRShell Rock10133.1721.2920.7502011Oct-11SRShell Rock1229.7025.0923.0062011May-12SRShell Rock43128.01014.4642.9332011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock59325.3531.6642.6462011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock27215.0418.7484.8682011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock342									
2011Oct-11SRShell Rock32141.71427.7756.6112011May-12SRShell Rock89239.8673.7700.8462011May-12SRShell Rock10133.1721.2920.7502011Oct-11SRShell Rock1229.7025.0923.0062011May-12SRShell Rock43128.01014.4842.9332011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock27215.0418.7484.8682011May-12SRShell Rock27215.0418.7484.8682011May-12SRShell Rock7729.5500.8411.4362011May-12SRShell Rock76211.7331.6843.1022011May-12SRShell Rock7628.76114.2263.6092011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock35 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2011May-12SRShell Rock89239.8673.7700.8462011May-12SRShell Rock10133.1721.2920.7502011Oct-11SRShell Rock1229.7025.0923.0062011May-12SRShell Rock43128.01014.4842.9332011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock59325.3531.6642.6462011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock26211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock682 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2011May-12SRShell Rock10133.1721.2920.7502011Oct-11SRShell Rock1229.7025.0923.0062011May-12SRShell Rock43128.01014.4842.9332011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock59325.3531.6642.6462011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock682 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2011Oct-11SRShell Rock1229.7025.0923.0062011May-12SRShell Rock43128.01014.4842.9332011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock59325.3531.6642.6462011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock2721.0431.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock452		-							
2011May-12SRShell Rock43128.01014.4842.9332011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock59325.3531.6642.6642011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock27215.0418.7484.8682011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock452 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2011May-12SRShell Rock55327.7532.1495.8542011May-12SRShell Rock59325.3531.6642.6462011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock452 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2011May-12SRShell Rock59325.3531.6642.6462011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock25219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock452									
2011May-12SRShell Rock6224.1402.6272.0892011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock27213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock4524.8131.1040.2322011May-12SRShell Rock452 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2011May-12SRShell Rock3223.0581.1880.9292011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock728.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock452<		•							
2011May-12SRShell Rock25220.0482.6550.2622011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock452									
2011May-12SRShell Rock85219.6877.2701.7282011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223		-							
2011Oct-11SRShell Rock27215.0418.7484.8682011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011May-12SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock90213.9791.3631.0322011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock56211.7331.6843.1022011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock729.5500.8411.4362011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock4628.76114.2263.6092011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock3427.8261.6790.4012011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock3327.4650.6670.3162011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012		-							
2011May-12SRShell Rock6826.9742.9290.9982011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012		-							
2011May-12SRShell Rock3516.2841.1040.2322011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011May-12SRShell Rock2926.0467.6322.3132011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012				Shell Rock	35	1	6.284	1.104	
2011May-12SRShell Rock9135.3590.2040.3952011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012		-							
2011May-12SRShell Rock4524.8131.1091.4062011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012		-			91		5.359	0.204	
2011May-12SRShell Rock4424.5282.5930.8542011May-12SRShell Rock6333.39703.3742011Oct-11SRShell Rock4223.2213.8875.012									
2011 Oct-11 SR Shell Rock 42 2 3.221 3.887 5.012		-	SR		44			2.593	
				Shell Rock				-	
	2011	0ct-11	SR	Shell Rock	42			3.887	5.012
	2011	May-12	SR	Shell Rock	31	2	2.729	1.062	0.482
2011 May-12 SR Shell Rock 40 3 2.624 3.098 1.844		May-12		Shell Rock		3			
2011 May-12 SR Shell Rock 38 1 2.251 4.132 0.961		•				1			
2011 May-12 SR Shell Rock 75 2 2.237 4.183 1.701	2011	May-12	SR	Shell Rock	75	2	2.237	4.183	1.701

2011 May-12 SR Shell Rock 79 2 2.149 9.335 5.558 2011 May-12 SR Shell Rock 16 3 1.971 0.275 0.108 2011 May-12 SR Shell Rock 18 3 1.606 0.200 1.108 2011 May-12 SR Shell Rock 30 2 1.527 1.749 0.815 2011 May-12 SR Shell Rock 71 3 1.102 1.209 1.175 2011 May-12 SR Shell Rock 50 3 0.720 0.233 0.410 2011 May-12 SR Shell Rock 67 3 0.635 0.606 0.875 2011 May-12 SR Shell Rock 66 3 0.534 0.055 0.179 2011 May-12 SR Shell Rock 65 2 0.458 0.141 1.388 2011 May-12 SR Shell Rock 57 3 0.435 0.117 0.174	12
2011May-12SRShell Rock1631.9710.2750.1082011May-12SRShell Rock1831.6060.2001.1082011May-12SRShell Rock3021.5271.7490.8152011May-12SRShell Rock7131.1021.2091.1752011May-12SRShell Rock5030.7200.2330.4102011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock6630.5340.0550.1792011May-12SRShell Rock6630.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock6130.2690.0760.1222011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120	
2011May-12SRShell Rock1631.9710.2750.1082011May-12SRShell Rock1831.6060.2001.1082011May-12SRShell Rock3021.5271.7490.8152011May-12SRShell Rock7131.1021.2091.1752011May-12SRShell Rock5030.7200.2330.4102011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock6630.5340.0550.1792011May-12SRShell Rock6630.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock6130.2690.0760.1222011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120	
2011May-12SRShell Rock1831.6060.2001.1082011May-12SRShell Rock3021.5271.7490.8152011May-12SRShell Rock7131.1021.2091.1752011May-12SRShell Rock5030.7200.2330.4102011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock3630.5340.0550.1792011May-12SRShell Rock6030.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock5730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock5130	
2011May-12SRShell Rock3021.5271.7490.8152011May-12SRShell Rock7131.1021.2091.1752011May-12SRShell Rock5030.7200.2330.4102011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock6030.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock5730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5130	
2011May-12SRShell Rock7131.1021.2091.1752011May-12SRShell Rock5030.7200.2330.4102011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock3630.5340.0550.1792011May-12SRShell Rock6030.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock3730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220	
2011May-12SRShell Rock5030.7200.2330.4102011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock3630.5340.0550.1792011May-12SRShell Rock6030.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock3730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock6730.6350.6060.8752011May-12SRShell Rock3630.5340.0550.1792011May-12SRShell Rock6030.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock5730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock6030.4760.1300.2502011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock3730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock6520.4580.1411.3882011May-12SRShell Rock3730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock3730.4350.1170.1742011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock5730.4190.0270.2312011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock4930.3760.1860.6652011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock6130.3190.0830.1542011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock2830.2690.0760.1222011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock4120.2660.6030.5222011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock8830.2110.0390.3032011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011May-12SRShell Rock5130.1650.0862.7102011May-12SRShell Rock5220.1490.3906.725	
2011 May-12 SR Shell Rock 52 2 0.149 0.390 6.725	
2011 May-12 SR Shell Rock 93 3 0.145 0.058 0.200	
2011 May-12 SR Shell Rock 64 3 0.140 0.147 0.924	
2011 May-12 SR Shell Rock 39 3 0.127 0.111 0.525	
2011 May-12 SR Shell Rock 81 3 0.118 0.143 2.017	
2011 May-12 SR Shell Rock 26 3 0.113 0.023 0.121 2014 May-12 SR Shell Rock 26 3 0.113 0.023 0.121	
2011 May-12 SR Shell Rock 53 3 0.111 0.110 0.991 2014 May-12 SR Shell Rock 53 3 0.111 0.110 0.991	
2011 May-12 SR Shell Rock 54 3 0.097 0 1.113 2011 May-12 SR Shell Rock 54 3 0.097 0 1.113	
2011 May-12 SR Shell Rock 8 3 0.086 0.224 0.528 2011 May-12 SR Shell Rock 8 3 0.086 0.224 0.528	
2011 May-12 SR Shell Rock 48 3 0.068 0 0.270 2011 May-12 SR Shell Rock 48 3 0.068 0 0.270	
2011 May-12 SR Shell Rock 86 3 0.068 0.035 0.387 2011 May-12 SR Shell Rock 86 3 0.042 0.025 0.387	
2011May-12SRShell Rock6930.0430.0850.2512011May-12SRShell Rock7230.02300.355	
2011 May-12 SR Shell Rock 47 3 0.013 0.033 0.103 2011 May-12 SR Shell Rock 76 3 0.013 0 0.063	
2011 May-12 SK Shell Rock 70 5 0.015 0 0.005 2011 May-12 SR Shell Rock 73 3 0.012 0.045 0.114	
2011 May-12 3K 3hen Rock 75 5 0.012 0.045 0.114 2011 May-12 SR Shell Rock 66 3 0 0 3.383	
2011 May-12 SR Shell Rock 00 5 0 0 5.505 2011 May-12 SR Shell Rock 70 3 0 0 0.230	
2011 May-12 SR Shell Rock 70 5 0 0 0.250 2011 May-12 SR Shell Rock 74 3 0 0 0 0	
2011 May 12 SR Shell Rock 71 5 6 6 6 6 6 7 2011 May-12 SR Shell Rock 77 3 0 0 0.278	
2011 May 12 SR Shell Rock 77 5 6 6 6.276 2011 May-12 SR Shell Rock 78 3 0 0 1.587	
2011 May-12 SR Shell Rock 80 3 0 0 0.157	
2011 May-12 SR Shell Rock 82 3 0 0.492	
2011 May-12 SR Shell Rock 83 3 0 0.200 1.444	
2011 May-12 SR Shell Rock 84 3 0 0 1.249	
2011 May-12 SR Shell Rock 87 3 0 0.062 1.425	
2011 May-12 SR Shell Rock 92 3 0 0 0	
2011 Oct-11 HM Benny Sand 4 4 103.464 55.304 1.959	
2011 Oct-11 HM Benny Sand 8 1 50.597 74.081 9.669	
2011 Oct-11 HM Benny Sand 15 4 24.327 38.586 5.669	
2011 Oct-11 HM Benny Sand 9 1 17.355 21.481 1.646	
2011 Oct-11 HM Benny Sand 7 1 13.517 31.010 4.461	
2011 Oct-11 HM Benny Sand 14 2 12.399 26.034 8.735	
2011 Oct-11 HM Benny Sand 1 2 10.477 10.820 4.569	
2011 Oct-11 HM Benny Sand 11 4 6.263 39.837 7.678	
2011 Oct-11 HM Benny Sand 13 2 4.316 51.299 13.995	
2011 Oct-11 HM Benny Sand 27 2 3.318 3.074 3.568	

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2011	0ct-11	HM	Benny Sand	22	2	2.907	8.189	4.068
2011	0ct-11	HM	Benny Sand	26	2	1.878	4.533	2.735
2011	0ct-11	HM	Bennies	71	4	18.036	63.974	10.591
2011	Oct-11	HM	Bennies	70	4	8.841	39.556	7.033
2011	0ct-11	HM	Bennies	86	1	5.722	50.374	5.898
2011	Oct-11	HM	Bennies	123	1	2.799	7.339	6.536
2011	0ct-11	HM	Bennies	102	4	1.827	14.123	5.742
2011	Oct-11	HM	Bennies	148	2	1.505	5.730	8.010
2011	0ct-11	HM	Bennies	7	2	0.821	2.091	0.916
2011	Oct-11	HM	Bennies	107	2	0.731	4.591	10.216
2011	0ct-11	HM	Bennies	84	2	0.642	5.169	10.090
2011	0ct-11	HM	Bennies	133	2	0.128	0.668	4.272
2011	0ct-11	HM	Bennies	114	2	0.125	1.308	9.349
2011	0ct-11	HM	Bennies	97	1	0.121	4.122	11.202
2011	0ct-11	HM	Bennies	64	2	0	0.332	5.022
2011	0ct-11	HM	Bennies	96	2	0	1.572	12.262
2011	0ct-11	HM	Bennies	127	2	0	0.137	0.686
2011	0ct-11	HM	NantuxentP	24	4	80.689	77.841	9.562
2011	0ct-11	HM	NantuxentP	18	1	44.482	26.589	9.293
2011	0ct-11	HM	NantuxentP	16	1	40.012	9.772	1.408
2011	0ct-11	HM	NantuxentP	15	1	23.151	65.238	5.304
2011	0ct-11	HM	NantuxentP	26	2	3.780	1.682	0.499
2011	0ct-11	HM	NantuxentP	13	2	1.843	5.704	3.026
2011	0ct-11	HM	NantuxentP	29	2	0.540	2.364	3.429
2011	0ct-11	HM	Hog Shoal	1	1	21.796	45.861	10.847
2011	Oct-11	HM	Hog Shoal	13	1	18.847	29.647	7.191
2011	Oct-11	HM	Hog Shoal	12	2	16.964	22.944	2.694
2011	Oct-11	HM	Hog Shoal	2	2	5.117	5.639	3.455
2011 2011	Oct-11	HM	Hog Shoal	4 20	1	2.866 1.350	7.534 17.353	4.458 6.715
2011 2011	Oct-11 Oct-11	HM HM	Hog Shoal New Beds	20 26	2 1	8.887	61.856	10.710
2011	0ct-11	HM	New Beds	20 17	1	6.839	59.220	10.196
2011	0ct-11	HM	New Beds	41	2	5.306	21.864	4.820
2011	0ct-11	HM	New Beds	53	2	3.494	36.041	10.741
2011	0ct-11	HM	New Beds	39	2	2.659	25.398	6.217
2011	0ct-11	HM	New Beds	28	2	1.998	7.591	4.229
2011	0ct-11	HM	New Beds	68	2	1.018	0.899	1.297
2011	0ct-11	HM	New Beds	55	2	0.923	3.960	4.765
2011	0ct-11	НМ	New Beds	43	2	0.676	2.780	5.764
2011	0ct-11	HM	Strawberry	9	2	3.321	19.068	10.872
2011	0ct-11	HM	Strawberry	29	1	1.217	13.064	12.456
2011	0ct-11	HM	Strawberry	24	2	0.924	0.316	0.156
2011	0ct-11	HM	Strawberry	20	2	0.260	0.733	1.058
2011	Oct-11	HM	Hawk's Nest	25	2	25.916	12.477	2.064
2011	0ct-11	HM	Hawk's Nest	2	1	13.938	33.484	2.951
2011	0ct-11	HM	Hawk's Nest	1	1	10.322	14.133	2.220
2011	0ct-11	HM	Hawk's Nest	9	2	3.261	3.101	3.028
2011	0ct-11	HM	Hawk's Nest	19	2	0.139	2.358	4.577
2011	0ct-11	HM	Beadons	3	1	26.855	119.763	10.094
2011	0ct-11	HM	Beadons	4	1	16.255	79.724	4.640
2011	0ct-11	HM	Beadons	9	2	2.232	7.945	0.271
2011	0ct-11	HM	Beadons	5	2	1.444	6.174	1.279
2011	0ct-11	HM	Beadons	15	2	0.432	1.681	0.173
2011	0ct-11	HM	Vexton	4	1	12.688	43.540	5.723
2011	0ct-11	HM	Vexton	9	1	11.496	92.935	16.673

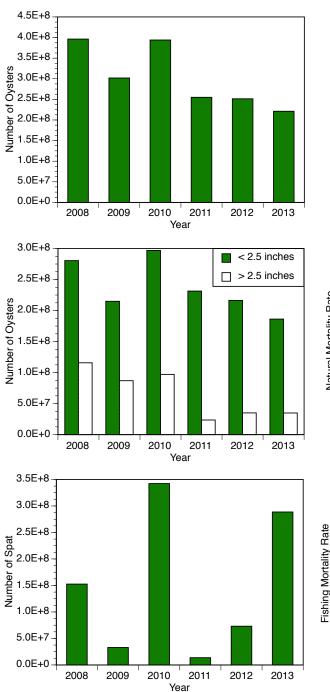
Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2011	0ct-11	НМ	Vexton	5	2	3.497	38.677	14.991
2011	0ct-11	HM	Vexton	33	2	0	0.081	0.268
2011	0ct-11	HM	Egg Island	44	2	1.653	10.506	11.562
2011	0ct-11	HM	Egg Island	62	1	0.360	0.628	10.707
2011	Oct-11	HM	Egg Island	101	2	0.315	0.275	4.909
2011	Oct-11	HM	Egg Island	82	2	0.155	1.213	14.836
2011	0ct-11	HM	Egg Island	59	2	0	0.801	6.186
2011	0ct-11	HM	Egg Island	85	2	0	0.096	1.882
2012	Oct-12	VLM	Hope Creek	43	2	99.683	45.364	15.495
2012	Oct-12	VLM	Hope Creek	64	1	91.066	24.466	14.565
2012	Oct-12	VLM	Hope Creek	54	2	75.528	19.257	19.034
2012	Oct-12	VLM	Hope Creek	75	1	71.899	16.377	10.101
2012	Oct-12	VLM	Hope Creek	61	1	68.872	16.601	9.040
2012	0ct-12	VLM	Hope Creek	59	4	57.387	19.860	4.998
2012	0ct-12	VLM	Hope Creek	63	1	57.046	20.322	9.753
2012	0ct-12	VLM	Hope Creek	65	2	49.072	16.248	7.572
2012	0ct-12	VLM	Hope Creek	86	2 2	34.702	6.139	7.467
2012	0ct-12	VLM	Liston Range	18		100.675	16.916	5.798
2012	0ct-12	VLM	Liston Range	24	1	98.488	22.680	5.701
2012	0ct-12	VLM	Liston Range	2	2	4.296	1.560	0.812
2012	0ct-12	VLM	Liston Range	22	2	3.704	1.761	0.291
2012	Oct-12	VLM	Liston Range	23	2	2.135	0.577	0.462
2012	0ct-12	VLM	Liston Range	21	1	0.056	0	0.146
2012	Oct-12	VLM	Fishing Creek	25	1	74.525	9.465	7.542
2012	Oct-12	VLM	Fishing Creek	16	1	14.093	1.829	3.821
2012	Oct-12	VLM	Fishing Creek	36	2	13.960	2.053	3.811
2012	Oct-12	VLM	Fishing Creek	8	2	2.461	0.340	0.534
2012	Oct-12	VLM	Fishing Creek	43	2	1.832	0.186	1.963
2012	Oct-12	LM	Round Island	11	1	112.578	17.428	19.932
2012	Oct-12	LM	Round Island	2	2	94.376	19.514	6.263
2012	Oct-12 Oct-12	LM LM	Round Island Round Island	12 27	1 2	90.171 20.331	5.128 2.771	12.109 1.767
2012 2012	Oct-12 Oct-12	LM	Round Island	68	2	20.531 2.502		
2012		LM LM		00 11	2	2.502	0.063 18.118	0.281 8.710
2012	May-13 Oct-12	LM	Upper Arnolds	11 10	2 1	202.528 158.164	30.671	13.273
2012	0ct-12	LM	Upper Arnolds Upper Arnolds	16		156.994	26.745	13.166
2012	May-13	LM	Upper Arnolds	3	2 2	146.995	25.144	20.970
2012	May-13 May-13	LM	Upper Arnolds	5	1	107.663	4.989	6.287
2012	Oct-12	LM	Upper Arnolds	18	1	105.235	7.748	9.525
2012	May-13	LM	Upper Arnolds	6	2	91.513	6.761	4.324
2012	May-13	LM	Upper Arnolds	22	2	87.865	10.508	22.356
2012	May-13	LM	Upper Arnolds	4	1	87.660	8.149	6.739
2012	May-13	LM	Upper Arnolds	17	3	61.445	6.656	5.172
2012	May-13	LM	Upper Arnolds	9	2	60.585	13.078	18.448
2012	May-13	LM	Upper Arnolds	25	1	53.300	4.689	5.148
2012	0ct-12	LM	Upper Arnolds	2	2	50.432	18.796	28.994
2012	Oct-12	LM	Upper Arnolds	12	2	44.730	7.550	3.870
2012	May-13	LM	Upper Arnolds	15	2	41.365	1.786	7.112
2012	May-13	LM	Upper Arnolds	14	2	39.289	3.012	9.437
2012	May-13	LM	Upper Arnolds	13	2	26.181	1.196	4.958
2012	May-13	LM	Upper Arnolds	8	2 2	14.052	4.197	2.605
2012	May-13	LM	Upper Arnolds	7	3	2.272	0.039	0.249
2012	May-13	LM	Upper Arnolds	21	2	1.305	0.085	0.070
2012	May-13	LM	Upper Arnolds	29	3	0.908	0.379	0.492
2012	May-13	LM	Upper Arnolds	23	3	0.611	0	0.070

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2012	May-13	LM	Upper Arnolds	19	3	0.134	0	0.073
2012	May-13	LM	Upper Arnolds	20	3	0.089	0.084	0.301
2012	May-13	LM	Upper Arnolds	26	3	0.047	0	0.010
2012	May-13	LM	Upper Arnolds	1	3	0	0	0.071
2012	May-13	LM	Upper Arnolds	24	3	0	0	0.098
2012	May-13	LM	Upper Arnolds	27	3	0	0	0
2012	May-13	LM	Upper Arnolds	28	3	0	0	0.001
2012	0ct-12	LM	Arnolds	7	1	149.686	22.770	6.909
2012	0ct-12	LM	Arnolds	16	1	112.908	19.631	4.304
2012	Oct-12	LM	Arnolds	17	1	100.883	11.959	6.095
2012	Oct-12	LM	Arnolds	27	2	80.153	12.410	9.372
2012	Oct-12	LM	Arnolds	3	2	5.843	0.370	2.539
2012	Oct-12	LM	Arnolds	2	2	2.959	0.778	2.390
2012	Oct-12	MMT	Upper Middle	63	2	79.150	26.471	9.527
2012	Oct-12	MMT	Upper Middle	1	2	77.474	4.039	12.743
2012	Oct-12	MMT	Upper Middle	58 71	1	73.834	3.427	14.265
2012 2012	Oct-12 Nov-12	MMT MMT	Upper Middle Middle	71 35	2 1	45.329 93.098	4.691 78.263	9.494 6.860
2012	Nov-12 Nov-12	MMT	Middle	35 34	1	93.098 91.671	108.246	6.060 6.069
2012	Nov-12 Nov-12	MMT	Middle	28	1	71.909	70.513	5.037
2012	Nov-12 Nov-12	MMT	Middle	4 3	2	24.931	12.881	6.785
2012	Nov-12 Nov-12	MMT	Middle	26	4	21.110	32.150	2.856
2012	Oct-12	MMT	Middle	32	2	13.275	3.996	5.587
2012	Nov-12	MMT	Middle	17	2	5.752	2.131	1.065
2012	Nov-12	MMT	Middle	51	2	5.527	2.011	2.345
2012	Nov-12	MMT	Sea Breeze	14	1	67.620	40.121	6.249
2012	Nov-12	MMT	Sea Breeze	37	2	53.202	42.821	2.452
2012	Nov-12	MMT	Sea Breeze	20	2	39.652	16.583	3.844
2012	Nov-12	MMT	Sea Breeze	29	2	34.586	33.634	2.908
2012	Nov-12	MMT	Sea Breeze	15	1	32.418	19.018	1.751
2012	Nov-12	MMT	Sea Breeze	31	1	16.663	11.719	1.481
2012	Nov-12	MMT	Sea Breeze	46	2	1.193	1.286	0.438
2012	Nov-12	MMM	Ship John	14	2	99.371	58.772	7.046
2012	Nov-12	MMM	Ship John	39	1	84.451	83.631	6.060
2012	Nov-12	MMM	Ship John	23	1	70.200	66.360	6.584
2012	Nov-12	MMM	Ship John	38	2	64.315	48.279	6.671
2012	Nov-12	MMM	Ship John	21	1	61.746	60.799	3.674
2012	Nov-12	MMM	Ship John	25	1	59.319	66.641	2.100
2012	Nov-12	MMM	Ship John	24	2	46.859	58.121	6.362
2012	Nov-12	MMM	Ship John	9	1	41.209	48.953	3.354
2012	Nov-12	MMM	Ship John	29	1	29.366	35.946	2.314
2012	Nov-12	MMM	Ship John	53 25	4	26.968	28.682	2.074
2012 2012	Nov-12 Nov-12	MMM MMM	Ship John	35 49	2 2	19.251 19.015	13.786 12.433	6.239 3.054
2012	Nov-12 Nov-12	MMM	Ship John Ship John	49 36	2 4	16.237	20.611	5.034
2012	Nov-12 Nov-12	MMM	Cohansey	25	4	94.234	28.033	8.701
2012	Nov-12 Nov-12	MMM	Cohansey	8	2	76.202	25.541	6.677
2012	Nov-12 Nov-12	MMM	Cohansey	56	2	64.430	53.676	4.341
2012	Nov-12 Nov-12	MMM	Cohansey	30 44	1	61.195	44.969	1.701
2012	Nov-12	MMM	Cohansey	54	1	55.232	91.918	7.106
2012	Nov-12	MMM	Cohansey	20	1	47.214	47.288	4.974
2012	Nov-12	MMM	Cohansey	- © 4	2	40.400	29.048	14.212
2012	Nov-12	MMM	Cohansey	35	2	36.148	19.043	9.997
2012	Nov-12	MMM	Cohansey	57	1	13.825	7.846	3.661
2012	Nov-12	MMM	Cohansey	32	2	13.747	19.497	8.326

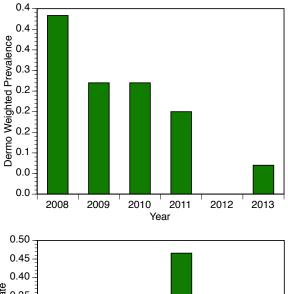
Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2012	Nov-12	SR	Shell Rock	20	1	55.233	148.813	2.925
2012	Nov-12	SR	Shell Rock	11	4	29.282	37.178	1.599
2012	Nov-12	SR	Shell Rock	90	2	19.050	23.576	1.118
2012	Nov-12	SR	Shell Rock	23	4	18.190	30.294	0.686
2012	Nov-12	SR	Shell Rock	44	2	15.705	51.608	1.692
2012	Nov-12	SR	Shell Rock	1	1	13.720	19.071	1.532
2012	Nov-12	SR	Shell Rock	46	2	13.579	29.963	2.561
2012	Nov-12	SR	Shell Rock	35	2	12.222	20.097	0.467
2012	Nov-12	SR	Shell Rock	45	2	7.901	12.320	1.017
2012	Nov-12	SR	Shell Rock	62	1	6.866	13.834	0.657
2012	Nov-12	SR	Shell Rock	9	1	6.549	14.686	0.870
2012	Nov-12	SR	Shell Rock	7	2	6.533	12.261	0.449
2012	Nov-12	HM	Benny Sand	7	1	29.872	57.598	4.535
2012	Nov-12	HM	Benny Sand	6	2	28.316	68.223	6.568
2012	Nov-12	HM	Benny Sand	4	4	16.608	36.319	0.707
2012	Nov-12	HM	Benny Sand	11	4	16.524	23.082	2.834
2012	Nov-12	HM	Benny Sand	12	4	16.515	65.032	2.039
2012	Nov-12	HM	Benny Sand	13 8	2	13.844	52.196	3.818 1.300
2012 2012	Nov-12 Nov-12	HM HM	Benny Sand	8 15	1 2	11.991 11.902	29.264 34.104	0.889
2012	Nov-12 Nov-12	нм НМ	Benny Sand Benny Sand	15 5	2	11.902	29.770	5.881
2012	Nov-12 Nov-12	HM	Benny Sand	20	2	6.896	17.884	4.504
2012	Nov-12 Nov-12	HM	Benny Sand	20 9	1	4.035	13.208	0.236
2012	Nov-12 Nov-12	HM	Benny Sand	1	2	1.809	2.331	0.442
2012	Nov-12	HM	Bennies	70	1	57.063	302.304	6.052
2012	Nov-12	HM	Bennies	101	1	27.757	152.079	4.660
2012	Oct-12	НМ	Bennies	148	2	7.094	7.680	9.097
2012	Nov-12	HM	Bennies	43	1	6.196	83.761	2.598
2012	Oct-12	HM	Bennies	152	2	5.393	0.187	10.158
2012	Oct-12	HM	Bennies	114	2	3.457	13.198	8.427
2012	Nov-12	HM	Bennies	102	4	1.790	10.356	0.453
2012	Oct-12	HM	Bennies	81	2	1.776	0.496	7.393
2012	Oct-12	HM	Bennies	34	2	1.081	5.660	14.155
2012	Oct-12	HM	Bennies	18	2	0.353	1.308	1.390
2012	Nov-12	HM	Bennies	38	2	0.218	0.847	0.278
2012	Oct-12	HM	Bennies	151	2	0.149	0.078	1.705
2012	Oct-12	HM	Bennies	119	2	0.084	0	6.163
2012	Nov-12	HM	NantuxentP	20	4	32.016	131.208	5.871
2012	Nov-12	HM	NantuxentP	24	1	23.615	41.281	1.841
2012	Nov-12	HM	NantuxentP	8	2	17.321	14.132	6.893
2012	Nov-12	HM	NantuxentP	18	1	15.864	19.028	5.213
2012	Nov-12	HM	NantuxentP	13	2	15.325	71.747	9.625
2012	Nov-12	HM	NantuxentP	25	1	13.973	26.899	1.006
2012	Nov-12	HM	NantuxentP	30 12	2	1.725	4.262 169.352	2.845
2012 2012	Nov-12 Oct-12	HM HM	Hog Shoal	13 7	1 2	26.299 18.492	74.178	5.134 13.423
2012	Nov-12	нм НМ	Hog Shoal	1		10.492	84.067	4.149
2012	Oct-12	нм НМ	Hog Shoal Hog Shoal	19	1 2	7.783	64.067 49.866	4.149
2012	0ct-12 0ct-12	НМ	Hog Shoal	19	2	5.198	49.800	1.420
2012	Nov-12	HM	Hog Shoal	4	1	4.338	17.401	2.802
2012	May-13	HM	New Beds	27	1	27.083	351.108	25.095
2012	May-13	HM	New Beds	23	2	25.633	87.547	13.497
2012	May-13	HM	New Beds	24	1	24.092	51.480	11.339
2012	May-13	HM	New Beds	26	1	22.901	105.519	14.815
2012	Nov-12	HM	New Beds	25	1	19.981	161.687	10.390

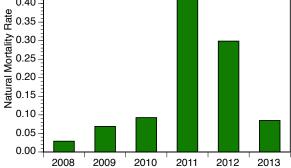
2012 May-13 HM New Beds 53 2 15.709 8.037 15.175 2012 May-13 HM New Beds 3 2 15.090 10.4522 17.249 2012 Oct-12 HM New Beds 2 13.376 94.659 18.221 2012 May-13 HM New Beds 35 3 13.307 79.358 20.455 2012 May-13 HM New Beds 39 2 12.865 44.334 9.468 2012 May-13 HM New Beds 13 1 10.663 23.517 1.1995 2012 May-13 HM New Beds 28 2 8.765 12.2486 7.7867 2012 May-13 HM New Beds 10 2 7.783 50.451 2.51.24 2012 May-13 HM New Beds 10 2 7.783 50.451 2.51.24 2012 May-13 H	Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2012 May-13 HM New Beds 53 2 15.709 80.07 15.775 2012 Ott-12 HM New Beds 3 2 15.009 104.822 17.249 2012 Ott-12 HM New Beds 35 3 13.377 79.358 20.855 2012 May-13 HM New Beds 39 2 12.865 14.334 9.466 2012 May-13 HM New Beds 39 2 12.865 12.9866 7.867 2012 May-13 HM New Beds 31 1 10.663 25.851 16.022 13.629 2012 May-13 HM New Beds 10 2 7.845 15.949 14.874 2012 May-13 HM New Beds 10 2 7.833 5.0451 15.629 2012 May-13 HM New Beds 1 2 7.577 3.9199 16.057 2012 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2012 May-13 HM New Beds 53 2 15.709 80.37 15.775 2012 Ott-12 HM New Beds 3 2 15.070 104.822 17.249 2012 Ott-12 HM New Beds 35 3 13.377 79.358 20.855 2012 May-13 HM New Beds 39 2 12.865 14.334 94.66 2012 May-13 HM New Beds 39 2 12.865 11.995 2012 May-13 HM New Beds 13 1 10.663 2.5311 6.384 2012 May-13 HM New Beds 20 2.8465 16.022 13.629 2012 May-13 HM New Beds 15 7.8645 16.022 13.629 2012 May-13 HM New Beds 1 2 7.577 3.9350 1.0807 2012 May-13 HM New Beds	2012	Mav-13	НМ	New Beds	41	2	19.513	76.482	13.553
2012 May-13 HM New Beds 3 2 15.090 10.422 17.249 2012 Oct-12 HM New Beds 35 3 13.307 79.358 20.855 2012 May-13 HM New Beds 39 2 13.307 79.358 20.855 2012 May-13 HM New Beds 39 2 12.865 44.334 9.468 2012 May-13 HM New Beds 38 2 11.466 23.511 6.364 2012 May-13 HM New Beds 37 2 8.466 34.171 12.255 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2012 Ort-12 HM New Beds 2 2 13.576 94.659 18.221 2012 Ort-12 HM New Beds 35 3 13.307 79.358 20.855 2012 May-13 HM New Beds 39 2 12.865 44.334 94.66 2012 May-13 HM New Beds 38 2 11.446 32.587 11.995 2012 May-13 HM New Beds 28 2 8.765 12.9866 7.667 2012 May-13 HM New Beds 59 3 8.450 16.022 13.629 2012 May-13 HM New Beds 10 2 7.833 50.451 12.42 8.997 2012 May-13 HM New Beds 17 1 6.767 79.210 9.4667 2.4067 2012 May-13 HM New Beds 54 2 4.775 0 1.3978		-							
2012 May-13 HM New Beds 35 3 13.307 79.358 20.855 2012 May-13 HM New Beds 39 2 12.865 44.334 9.468 2012 May-13 HM New Beds 38 2 11.446 32.587 11.995 2012 May-13 HM New Beds 38 2 8.765 12.90.66 7.867 2012 May-13 HM New Beds 37 2 8.466 34.171 12.255 2012 May-13 HM New Beds 15 1 7.864 55.993 14.874 2012 May-13 HM New Beds 16 2 7.823 50.451 25.124 2012 May-13 HM New Beds 17 1 6.767 7.91.19 9.242 2012 Nay-13 HM New Beds 40 2 4.765 0 13.978 2012 May-13		-							
2012 Oct-12 HM New Beds 32 2 13.124 210.56 44.334 9.468 2012 May-13 HM New Beds 38 2 11.446 32.837 11.995 2012 May-13 HM New Beds 28 2 8.785 129.866 7.867 2012 May-13 HM New Beds 37 2 8.466 34.171 12.255 2012 May-13 HM New Beds 59 3 8.450 16.022 13.629 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 10 2 7.877 39.189 16.057 2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012	2012	May-13	HM					79.358	20.855
2012 May-13 HM New Beds 38 2 11.446 32.587 11.1995 2012 Nov-12 HM New Beds 13 1 10.663 23.511 6.384 2012 May-13 HM New Beds 59 3 8.450 16.022 13.669 2012 May-13 HM New Beds 42 2 8.224 7.242 8.997 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 1 2 7.577 39.189 16.057 2012 May-13 HM New Beds 52 1 5.485 4.001 6.672 2012 May-13 HM New Beds 6 3 4.742 21.474 6.211 2012 May-13	2012	0ct-12	HM	New Beds	22	2	13.124	210.540	12.759
2012 May-13 HM New Beds 13 1 10.663 22.511 6.384 2012 May-13 HM New Beds 37 2 8.785 129.866 7.867 2012 May-13 HM New Beds 59 3 8.456 16.022 13.629 2012 May-13 HM New Beds 15 1 7.844 55.993 14.874 2012 May-13 HM New Beds 16 2 7.833 50.511 2.5124 2012 May-13 HM New Beds 16 2 7.833 50.451 2.5124 2012 May-13 HM New Beds 17 1 6.787 79.10 9.242 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 14 2 4.168 12.1474 6.211 2012 May-13		May-13	HM	New Beds	39		12.865	44.334	
2012 Nov-12 HM New Beds 28 2 8.785 129.866 7.867 2012 May-13 HM New Beds 59 3 8.450 16.022 13.629 2012 May-13 HM New Beds 12 8.242 7.242 8.997 2012 May-13 HM New Beds 15 1 7.864 55.993 14.874 2012 May-13 HM New Beds 16 2 7.833 50.451 25.124 2012 May-13 HM New Beds 1 2 7.577 39.189 16.057 2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.772 0 13.978 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM <t< td=""><td></td><td></td><td>HM</td><td>New Beds</td><td></td><td>2</td><td>11.446</td><td></td><td></td></t<>			HM	New Beds		2	11.446		
2012 May-13 HM New Beds 37 2 8.460 16.022 13.629 2012 May-13 HM New Beds 42 2 8.224 7.242 8.997 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 10 2 7.873 50.451 25.124 2012 May-13 HM New Beds 16 2 7.577 39.189 16.057 2012 Nov-12 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 14 2 4.405 2.904 11.200 2012 May-13 HM New Beds 11 2 4.405 12.513 9.569 2012 May-13 HM New Beds 11 2 4.405 19.04 2012 <td< td=""><td></td><td></td><td></td><td>New Beds</td><td></td><td></td><td></td><td></td><td></td></td<>				New Beds					
2012 May-13 HM New Beds 59 3 8.450 16.022 13.629 2012 May-13 HM New Beds 15 1 7.864 7.242 8.997 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 1 2 7.577 39.189 16.057 2012 Nov-12 HM New Beds 1 2 7.577 39.189 16.057 2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 6 3 4.742 2.1474 6.211 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 11 2 4.128 7.441 19.425 2012 May-13 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2012 May-13 HM New Beds 12 2 8.24 7.242 8.997 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 10 2 7.833 50.451 23.124 2012 May-13 HM New Beds 1 2 7.577 39.189 16.057 2012 Nov-12 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 64 3 4.742 2.144 6.211 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 9 3 3.846 4.466 15.598 2012 May-13 HM New Beds 51 2 2.835 2.0.928 10.035 2012 May-13 H		-							
2012 May-13 HM New Beds 15 1 7.864 55.993 14.874 2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 1 2 7.577 39.189 16.057 2012 Nov-12 HM New Beds 1 2 7.577 39.189 16.057 2012 May-13 HM New Beds 54 2 4.775 0 13.976 2012 May-13 HM New Beds 40 2 4.405 2.984 11.200 2012 May-13 HM New Beds 11 2 4.128 7.481 19.425 2012 May-13 HM New Beds 11 2 2.835 20.928 10.035 2012 May-13 HM New Beds 12 2.835 20.928 10.035 2012 May-13 HM		-							
2012 May-13 HM New Beds 10 2 7.833 50.451 25.124 2012 May-13 HM New Beds 36 3 7.713 23.956 21.086 2012 Nov-12 HM New Beds 1 2 7.577 39.189 16.057 2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.742 21.474 6.211 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 21 3 2.949 7.445 10.570 2012 May-13 HM New Beds 51 2 2.835 2.0.928 10.035 2012 May-13 HM New Beds 51 2 2.463 0 9.125 2012 May-13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2012 May-13 HM New Beds 36 3 7.713 23.956 21.086 2012 May-13 HM New Beds 17 1 6.787 79.210 9.242 2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 6 3 4.742 21.474 6.211 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 21 3 3.848 4.666 15.598 2012 May-13 HM New Beds 21 3 2.949 7.445 10.570 2012 May-13 HM New Beds 22 2.236 2.068 19.684 2012 May-13 HM N									
2012 May-13 HM New Beds 1 2 7.77 39.189 16.057 2012 Nov-12 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 6 3 4.742 21.474 6.211 2012 May-13 HM New Beds 40 2 4.405 2.984 11.200 2012 May-13 HM New Beds 11 2 4.128 7.481 19.425 2012 May-13 HM New Beds 51 2 2.835 2.0.928 10.035 2012 May-13 HM New Beds 12 2.2.2.369 2.685 19.684 2012 May-13 HM New Beds 29 2 112 3.160 17.036 2012 May-13 HM <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-							
2012 Nav-12 HM New Beds 17 1 6.787 79.210 9.242 2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 64 3 4.742 21.474 6.211 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 9 3 3.848 4.466 15.598 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 62 2.369 2.685 19.664 2012 May-13 HM New Beds 65 2 2.068 5.413 5.671 2012 May-13 HM Ne		5							
2012 May-13 HM New Beds 52 1 5.485 4.601 6.672 2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 6 3 4.742 21.474 6.211 2012 May-13 HM New Beds 14 2 4.405 2.984 11.200 2012 May-13 HM New Beds 9 3 3.848 4.466 15.598 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 51 2 2.843 0 9.125 2012 May-13 HM New Beds 29 2 2.112 3.160 17.036 2012 May-13 HM New Beds 4 2 2.067 1.803 28.252 2012 May-13 HM									
2012 May-13 HM New Beds 54 2 4.775 0 13.978 2012 May-13 HM New Beds 6 3 4.742 21.474 6.211 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 11 2 4.128 7.481 19.425 2012 May-13 HM New Beds 9 3 3.848 4.466 15.598 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 21 2 2.436 0 9.125 2012 May-13 HM New Beds 29 2 2.112 3.160 17.036 2012 May-13 HM New Beds 66 2 2.067 1.803 28.252 2012 May-13 HM New Beds 67 2 1.100 0 8.119 2012									
2012 May-13 HM New Beds 6 3 4.742 21.474 6.211 2012 May-13 HM New Beds 40 2 4.468 2.984 11.200 2012 May-13 HM New Beds 11 2 4.168 12.513 9.569 2012 May-13 HM New Beds 11 2 4.128 7.481 19.425 2012 May-13 HM New Beds 21 3 2.949 7.445 10.570 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 62 2.369 2.685 19.684 2012 May-13 HM New Beds 65 2 2.067 1.803 28.252 2012 May-13 HM New Beds 55 2 1.548 1.206 15.855 2012 May-13 HM		-							
2012 May-13 HM New Beds 40 2 4.405 2.984 11.200 2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 9 3 3.848 4.466 15.598 2012 May-13 HM New Beds 21 3 2.949 7.445 10.570 2012 May-13 HM New Beds 51 2 2.352 2.028 10.035 2012 May-13 HM New Beds 66 2 2.369 2.685 19.684 2012 May-13 HM New Beds 62 2.047 160 7.736 2012 May-13 HM New Beds 65 2 2.067 1.803 2.8252 2012 Oct-12 HM New Beds 55 2 1.548 1.206 0.385 2012 May-13 HM N		-							
2012 May-13 HM New Beds 14 2 4.168 12.513 9.569 2012 May-13 HM New Beds 11 2 4.128 7.481 19.425 2012 May-13 HM New Beds 9 3 3.848 4.466 15.598 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 66 2 2.369 2.665 19.664 2012 May-13 HM New Beds 20 2 2.112 3.160 17.036 2012 May-13 HM New Beds 65 2 2.067 1.803 28.252 2012 Oct-12 HM New Beds 98 3 1.742 4.905 0.385 2012 Oct-12 HM New Beds 67 2 1.100 0 8.119 2012 May-13 HM<									
2012 May-13 HM New Beds 11 2 4.128 7.481 19.425 2012 May-13 HM New Beds 9 3 3.848 4.466 15.598 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 66 2 2.369 2.685 19.684 2012 May-13 HM New Beds 12 2 2.243 0 9.125 2012 May-13 HM New Beds 49 2 2.066 5.413 5.671 2012 May-13 HM New Beds 65 2 2.067 1.803 2.8252 2012 Oct-12 HM New Beds 98 3 1.742 4.905 0.385 2012 Oct-12 HM New Beds 60 2 1.600 0 1.2503 2012 May-13 HM									
2012May-13HMNew Beds933.8484.46615.5982012May-13HMNew Beds2132.9497.44510.5702012May-13HMNew Beds5122.83520.92810.0352012May-13HMNew Beds6622.3692.68519.6842012May-13HMNew Beds1222.24309.1252012May-13HMNew Beds2922.1123.16017.0362012May-13HMNew Beds6522.0671.80328.2522012Oct-12HMNew Beds6522.0671.80328.2522012Oct-12HMNew Beds5521.5481.20615.8552012Oct-12HMNew Beds6721.10008.1192012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds5830.9880.23.2642012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds5030.6680.2926.731 <trr< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trr<>		-							
2012 May-13 HM New Beds 21 3 2.949 7.445 10.570 2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 66 2 2.369 2.685 19.664 2012 May-13 HM New Beds 29 2 2.112 3.160 17.036 2012 May-13 HM New Beds 4 2 2.068 5.413 5.671 2012 May-13 HM New Beds 65 2 2.067 1.803 2.8252 2012 Oct-12 HM New Beds 98 3 1.742 4.905 0.385 2012 Oct-12 HM New Beds 55 2 1.100 0 8.119 2012 May-13 HM New Beds 58 3 0.988 0.274 9.714 2012 May-13 HM <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2012 May-13 HM New Beds 51 2 2.835 20.928 10.035 2012 May-13 HM New Beds 66 2 2.369 2.685 19.684 2012 May-13 HM New Beds 12 2 2.424 0 9.125 2012 May-13 HM New Beds 29 2 2.112 3.160 17.036 2012 May-13 HM New Beds 4 2 2.068 5.413 5.671 2012 Oct-12 HM New Beds 16 2 1.970 67.175 19.140 2012 Oct-12 HM New Beds 55 2 1.548 1.206 1.885 2012 May-13 HM New Beds 58 3 0.988 0 2.203 2012 May-13 HM New Beds 59 3 0.883 0.565 2.792 2012 May-13 HM									
2012May-13HMNew Beds6622.3692.68519.6842012May-13HMNew Beds1222.24309.1252012May-13HMNew Beds2922.1123.16017.0362012May-13HMNew Beds422.0685.4135.6712012May-13HMNew Beds6522.0671.80328.2522012Oct-12HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds5521.5481.20615.8552012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4430.6680.2508.6012012May-13HMNew Beds4430.6730.64113.356 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2012May-13HMNew Beds1222.24309.1252012May-13HMNew Beds2922.1123.16017.0362012May-13HMNew Beds422.0685.4135.6712012May-13HMNew Beds6522.0671.80328.2522012Oct-12HMNew Beds1621.97067.17519.1402012May-13HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds5521.5481.20615.8552012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.636 <trr< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></trr<>		-							
2012May-13HMNew Beds2922.1123.16017.0362012May-13HMNew Beds422.0685.4135.6712012May-13HMNew Beds6522.0671.80328.2522012Oct-12HMNew Beds1621.97067.17519.1402012May-13HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds5521.5481.20615.8552012May-13HMNew Beds6721.06008.1192012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds7930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.703011.632012May-13HMNew Beds4320.703011.632012May-13HMNew Beds4330.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6920.5000.87318.690 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
2012May-13HMNew Beds422.0685.4135.6712012May-13HMNew Beds6522.0671.80328.2522012Oct-12HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds5521.5481.20615.8552012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds7920.8350.9772.7882012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7080.2926.7312012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds730.49004.6082012May-13HMNew Beds730.49004.6082012 <td>2012</td> <td>-</td> <td>HM</td> <td>New Beds</td> <td>29</td> <td></td> <td>2.112</td> <td>3.160</td> <td>17.036</td>	2012	-	HM	New Beds	29		2.112	3.160	17.036
2012Oct-12HMNew Beds1621.97067.17519.1402012May-13HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds5521.5481.20615.8552012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds7920.8330.5652.7922012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.44004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds7430.4130.54112.102<	2012	May-13	HM	New Beds	4		2.068	5.413	5.671
2012May-13HMNew Beds9831.7424.9050.3852012Oct-12HMNew Beds 55 21.5481.20615.8552012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds4930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds730.49004.6082012May-13HMNew Beds730.30105.08820	2012	May-13	HM		65		2.067	1.803	28.252
2012Oct-12HMNew Beds5521.5481.20615.8552012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds4930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds7430.30105.08820		0ct-12	HM	New Beds					
2012May-13HMNew Beds6721.10008.1192012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds4930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds7430.30105.0882012May-13HMNew Beds9330.30105.088 <tr <tr=""><</tr>		May-13		New Beds					
2012May-13HMNew Beds6021.060012.5032012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds4930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds4830.633011.2052012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds7430.30105.0882012May-13HMNew Beds7430.30105.0882012May-13HMNew Beds9330.30105.0882012 <td></td> <td></td> <td></td> <td>New Beds</td> <td></td> <td></td> <td></td> <td>1.206</td> <td></td>				New Beds				1.206	
2012May-13HMNew Beds5830.988023.2642012May-13HMNew Beds4930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.20605.5052		5							
2012May-13HMNew Beds4930.8830.5652.7922012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds4830.663011.2052012May-13HMNew Beds6430.5582.62113.6362012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.20605.5052012May-13HMNew Beds9530.20605.505 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
2012May-13HMNew Beds7920.8380.2749.7142012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds4830.633011.2052012May-13HMNew Beds6430.5582.62113.6362012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.20605.5052012May-13HMNew Beds9530.20605.505								-	
2012May-13HMNew Beds5030.8350.9772.7882012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.6362012May-13HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.20605.5052012May-13HMNew Beds9530.20605.505		-							
2012May-13HMNew Beds8020.7800.2926.7312012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.6362012May-13HMNew Beds6920.5000.87318.6902012Oct-12HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.2370.2661.0612012May-13HMNew Beds9530.20605.505		-							
2012May-13HMNew Beds4430.7124.19613.3562012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.6362012May-13HMNew Beds6920.5000.87318.6902012Oct-12HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.2070.2661.0612012May-13HMNew Beds9530.20605.505		-							
2012May-13HMNew Beds4320.703011.1632012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.6362012Oct-12HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds9330.2370.2661.0612012May-13HMNew Beds9530.20605.505		-							
2012May-13HMNew Beds4830.6680.2508.6012012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.6362012Oct-12HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505		5							
2012May-13HMNew Beds10530.633011.2052012May-13HMNew Beds6430.5582.62113.6362012Oct-12HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505		-						-	
2012May-13HMNew Beds6430.5582.62113.6362012Oct-12HMNew Beds 69 20.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505		-							
2012Oct-12HMNew Beds6920.5000.87318.6902012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505									
2012May-13HMNew Beds730.49004.6082012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505									
2012May-13HMNew Beds7430.4130.54112.1022012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505									
2012May-13HMNew Beds520.3552.7855.2212012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505		-						-	
2012May-13HMNew Beds9330.30105.0882012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505									
2012May-13HMNew Beds11030.2370.2661.0612012May-13HMNew Beds9530.20605.505									
2012 May-13 HM New Beds 95 3 0.206 0 5.505		-						-	
		-							
		-						0.314	

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2012	May-13	HM	New Beds	84	3	0.194	0	12.243
2012	May-13	HM	New Beds	92	3	0.187	0	2.474
2012	0ct-12	HM	New Beds	83	2	0.175	0	7.726
2012	May-13	HM	New Beds	88	3	0.172	0.134	0.294
2012	May-13	HM	New Beds	102	3	0.146	0.096	3.363
2012	May-13	HM	New Beds	96	3	0.132	0.173	4.175
2012	May-13	HM	New Beds	71	3	0.127	0	5.159
2012	May-13	HM	New Beds	57	3	0.120	0	8.287
2012	May-13	HM	New Beds	109	3	0.119	0.155	1.584
2012	May-13	HM	New Beds	82	3	0.115	0.301	10.708
2012	May-13	HM	New Beds	104	3	0.112	0	10.092
2012	May-13	HM	New Beds	46	3	0.104	0.035	1.462
2012	May-13	HM	New Beds	78	3	0.099	0	2.391
2012	May-13	HM	New Beds	70	3	0.094	0	6.549
2012	May-13	HM	New Beds	81	2	0.090	0.090	8.486
2012	May-13	HM	New Beds	77	3	0.057	0.087	0.657
2012	May-13	HM	New Beds	63	3	0.048	0.126	3.524
2012 2012	May-13	HM	New Beds	31 47	3 3	0.038 0.038	0 0.100	0.100 0.784
2012	May-13 May-13	HM HM	New Beds New Beds	20	3	0.038	0.100	0.784 0.149
2012	May-13 May-13	HM	New Beds	20 91	3	0.019	0	1.172
2012	May-13 May-13	HM	New Beds	101	3	0.019	0.051	0.203
2012	May-13 May-13	HM	New Beds	8	3	0.019	0.425	0.338
2012	May-13	HM	New Beds	34	3	0.018	0.125	0.523
2012	May-13	HM	New Beds	75	3	0.018	0	0.268
2012	May-13	НМ	New Beds	99	3	0.018	0.018	0.074
2012	May-13	HM	New Beds	112	3	0.018	0	0.059
2012	May-13	HM	New Beds	18	3	0	0	0
2012	May-13	HM	New Beds	19	3	0	0	0.003
2012	May-13	HM	New Beds	30	3	0	0.479	6.007
2012	May-13	HM	New Beds	32	3	0	0	0.032
2012	May-13	HM	New Beds	33	3	0	0	0.024
2012	May-13	HM	New Beds	61	3	0	0	18.864
2012	May-13	HM	New Beds	62	3	0	0.311	4.477
2012	May-13	HM	New Beds	72	3	0	0	5.481
2012	May-13	HM	New Beds	73	3	0	0	18.440
2012	May-13	HM	New Beds	76	3	0	0.041	0.237
2012	May-13	HM	New Beds	85	3	0	0.194	5.451
2012	May-13	HM	New Beds	86	3	0	0	3.201
2012	May-13	HM	New Beds	87	3	0	0.217	5.606
2012	May-13	HM	New Beds	90	3	0	0	0.597
2012	May-13	HM	New Beds	94	3	0	0	7.386
2012	May-13	HM	New Beds	97 100	3	0	0.381	13.261
2012	May-13	HM HM	New Beds	100 103	3	0	0 0	0.055 16.597
2012 2012	May-13 May-13	нм НМ	New Beds New Beds	103	3 3	0 0	0.058	0.089
2012	May-13 May-13	HM	New Beds	100	3	0	0.038	0.089
2012	May-13 May-13	HM	New Beds	107	3	0	0	0.082
2012	May-13 May-13	HM	New Beds	100	3	0	0	0.024
2012	May-13 May-13	HM	New Beds	45	2	0	0	2.516
2012	May-13	HM	New Beds	56	2	0	0.248	4.212
2012	May-13	НМ	New Beds	68	2	0	0.642	8.725
2012	Oct-12	HM	Strawberry	5	1	1.525	4.431	3.455
2012	0ct-12	HM	Strawberry	1	2	1.334	1.027	3.765
2012	Oct-12	HM	Strawberry	11	2	0.505	0.132	2.799

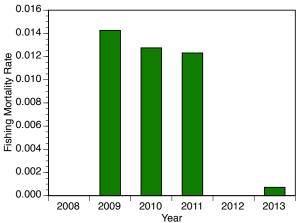

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2012	0ct-12	HM	Strawberry	16	2	0.324	0.235	4.568
2012	Oct-12	HM	Hawk's Nest	1	1	15.275	111.783	3.124
2012	Oct-12	HM	Hawk's Nest	27	1	11.277	91.659	3.480
2012	Oct-12	HM	Hawk's Nest	28	2	7.760	55.951	1.782
2012	Oct-12	HM	Hawk's Nest	9	2	0.542	7.436	3.262
2012	Oct-12	HM	Hawk's Nest	19	2	0	0.786	6.177
2012	Oct-12	HM	Beadons	4	1	24.831	518.219	5.780
2012	Oct-12	HM	Beadons	3	1	12.340	188.717	8.810
2012	Oct-12	HM	Beadons	16	2	2.150	25.972	0.712
2012	Oct-12	HM	Beadons	15 18	2 2	2.132 0.475	20.114	1.120 3.427
2012 2012	Oct-12 Oct-12	HM HM	Beadons Vexton	10 4	2 1	0.475	22.387 256.798	5.996
2012	Oct-12 Oct-12	НМ	Vexton	4 9	1	2.723	230.798	7.416
2012	Oct-12 Oct-12	HM	Vexton	3	1 2	0.787	20.400	3.857
2012	Oct-12	HM	Vexton	2	2	0.109	0.443	1.080
2012	Oct-12	HM	Ledge	13	2	0.585	2.042	16.062
2012	Oct-12	HM	Ledge	14	2	0.390	0.510	12.284
2012	Oct-12	HM	Ledge	8	2	0.330	3.456	22.859
2012	Oct-12	HM	Ledge	6	1	0.179	1.869	14.626
2012	Oct-12	HM	Ledge	35	2	0	0	0.199
2013	Nov-13	VLM	Hope Creek	75	1	81.547	128.786	10.386
2013	Nov-13	VLM	Hope Creek	74	2	75.718	146.781	12.935
2013	Nov-13	VLM	Hope Creek	76	1	75.707	81.497	8.026
2013	Nov-13	VLM	Hope Creek	63	1	64.592	96.614	6.846
2013	Nov-13	VLM	Hope Creek	53	2	53.812	98.932	11.572
2013	Nov-13	VLM	Hope Creek	62	1	49.312	88.791	5.253
2013	Nov-13	VLM	Hope Creek	55	2	25.335	26.278	1.709
2013	Nov-13	VLM	Hope Creek	59	4	19.158	19.112	2.564
2013	Nov-13	VLM	Hope Creek	86	2	17.424	12.661	1.744
2013	Nov-13	VLM	Liston Range	24	1	122.263	134.955	9.095
2013	Nov-13	VLM	Liston Range	18	2	54.347	50.048	3.540
2013	Nov-13	VLM	Liston Range	12	2	53.955	35.289	2.226
2013	Nov-13	VLM	Liston Range	14	1 2	45.843	40.760	2.318
2013 2013	Nov-13	VLM	Liston Range	2 25	2	5.666	2.742 0.529	0.232 0.244
2013	Nov-13 Nov-13	VLM VLM	Liston Range Fishing Creek	25 25		1.173 144.818	0.529 71.594	0.244 11.840
2013	Nov-13 Nov-13	VLM	Fishing Creek	23 4	1 2	17.687	20.910	3.299
2013	Nov-13	VLM	Fishing Creek	26	2	14.316	6.731	3.285
2013	Nov-13	VLM	Fishing Creek	16	1	14.228	5.487	5.060
2013	Nov-13	VLM	Fishing Creek	17	2	1.594	0.915	0.106
2013	Nov-13	LM	Round Island	12	1	44.947	27.607	5.758
2013	Nov-13	LM	Round Island	24	1	31.757	26.770	4.556
2013	Nov-13	LM	Round Island	47	2	25.080	10.040	3.311
2013	Nov-13	LM	Round Island	15	2	2.272	1.275	0.765
2013	Nov-13	LM	Round Island	50	2	0.209	0.019	0.043
2013	Nov-13	LM	Upper Arnolds	17	2	111.212	120.185	8.500
2013	Nov-13	LM	Upper Arnolds	9	2	91.892	84.317	11.351
2013	Nov-13	LM	Upper Arnolds	3	1	70.644	50.326	8.869
2013	Nov-13	LM	Upper Arnolds	4	2	55.126	73.253	3.794
2013	Nov-13	LM	Upper Arnolds	11	1	47.747	37.740	2.995
2013	Nov-13	LM	Upper Arnolds	5	1	35.691	49.689	2.137
2013	Nov-13	LM	Upper Arnolds	25	2	33.689	19.778	1.447
2013	Nov-13	LM	Arnolds	7	1	136.116	89.292	10.746
2013	Nov-13	LM	Arnolds	18	1	122.171	72.605	11.348
2013	Nov-13	LM	Arnolds	6	1	78.140	70.295	4.977

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2013	Nov-13	LM	Arnolds	15	2	53.812	51.464	3.420
2013	Nov-13	LM	Arnolds	10	2	23.500	11.959	3.129
2013	Nov-13	LM	Arnolds	46	2	4.908	3.643	3.180
2013	Nov-13	MMT	Upper Middle	48	1	82.053	75.547	14.432
2013	Nov-13	MMT	Upper Middle	1	2	29.174	28.049	12.036
2013	Nov-13	MMT	Upper Middle	63	2	24.581	10.718	3.890
2013	Nov-13	MMT	Upper Middle	56	2	4.200	5.363	8.333
2013	Nov-13	MMT	Middle	36	1	34.458	40.587	4.248
2013	Nov-13	MMT	Middle	28	4	31.608	26.452	3.817
2013	Nov-13	MMT	Middle	22	2	30.989	14.893	11.252
2013	Nov-13	MMT	Middle	27	4	29.760	20.230	3.035
2013	Nov-13	MMT	Middle	43	2	18.506	9.219	8.497
2013	Nov-13	MMT	Middle	38	1	10.107	5.082	2.783
2013	Nov-13	MMT	Middle	26	2	6.570	5.361	1.759
2013	Nov-13	MMT	Middle	10	2	5.109	2.322	13.520
2013	Nov-13	MMT	Middle	1	2	1.808	1.333	3.298
2013	Nov-13	MMT	Sea Breeze	20	2	63.217	21.499	17.462
2013	Nov-13	MMT	Sea Breeze	25	2	40.771	21.917	6.157
2013	Nov-13	MMT	Sea Breeze	14	1	39.206	45.054	11.558
2013	Nov-13	MMT	Sea Breeze	31	1	34.858	18.593	4.410
2013	Nov-13	MMT	Sea Breeze	30	1	15.671	5.591	1.832
2013	Nov-13	MMT	Sea Breeze	29	2	13.735	5.840	4.097
2013	Nov-13	MMT	Sea Breeze	17 56	2	12.801	3.295	4.594
2013	Nov-13	MMM	Ship John	56	2	80.569	91.468 44.291	22.337
2013 2013	Nov-13 Nov-13	MMM MMM	Ship John	46 25	2 1	77.048 70.498	44.291 52.585	13.538 8.492
2013	Nov-13 Nov-13	MMM	Ship John	25 53	1 4	70.498 69.984	52.565 9.481	5.321
2013	Nov-13 Nov-13	MMM	Ship John	33		52.675	9.401 56.343	5.521
2013	Nov-13 Nov-13	MMM	Ship John Ship John	33 42	1 1	52.675 47.069	56.343 44.481	5.132
2013	Nov-13 Nov-13	MMM	Ship John	16	1	40.977	54.149	7.322
2013	Nov-13	MMM	Ship John	21	1	37.306	34.914	7.426
2013	Nov-13	MMM	Ship John	18	2	29.363	13.291	3.191
2013	Nov-13	MMM	Ship John	58	1	27.756	36.987	13.626
2013	Nov-13	MMM	Ship John	35	2	20.967	8.101	5.667
2013	Nov-13	MMM	Ship John	36	4	12.988	3.480	4.795
2013	Nov-13	MMM	Ship John	5	2	12.229	6.200	4.722
2013	Nov-13	MMM	Cohansey	59	1	54.894	40.760	16.655
2013	Nov-13	MMM	Cohansey	37	1	53.998	37.810	13.051
2013	Nov-13	MMM	Cohansey	25	1	49.187	34.765	10.477
2013	Nov-13	MMM	Cohansey	50	1	42.612	38.451	8.154
2013	Nov-13	MMM	Cohansey	24	2	42.348	25.885	9.644
2013	Nov-13	MMM	Cohansey	46	2	34.469	21.218	7.779
2013	Nov-13	MMM	Cohansey	3	2	29.148	27.740	13.348
2013	Nov-13	MMM	Cohansey	56	2	27.521	12.849	3.471
2013	Nov-13	MMM	Cohansey	35	2	14.669	9.888	3.562
2013	Nov-13	MMM	Cohansey	72	1	14.038	4.571	7.056
2013	Nov-13	SR	Shell Rock	24	1	46.910	26.536	3.775
2013	Nov-13	SR	Shell Rock	11	4	40.425	7.905	3.309
2013	Nov-13	SR	Shell Rock	34	4	37.107	21.838	6.386
2013	Nov-13	SR	Shell Rock	29	4	31.916	27.553	7.627
2013	Nov-13	SR	Shell Rock	2	1	28.511	7.520	4.142
2013	Nov-13	SR	Shell Rock	14	1	23.440	20.268	4.554
2013	Nov-13	SR	Shell Rock	30	4	21.250	30.001	5.913
2013	Nov-13	SR	Shell Rock	25	2	18.134	11.374	1.724
2013	Nov-13	SR	Shell Rock	27	4	17.774	6.989	2.470

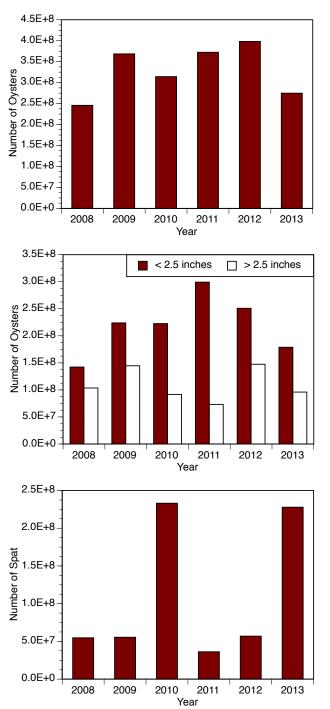

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2013	Nov-13	SR	Shell Rock	68	2	17.471	10.391	5.641
2013	Nov-13	SR	Shell Rock	4	1	17.414	8.194	4.168
2013	Nov-13	SR	Shell Rock	55	2	14.123	3.107	5.254
2013	Nov-13	SR	Shell Rock	59	2	14.100	2.442	2.345
2013	Nov-13	SR	Shell Rock	7	2	8.762	5.061	1.902
2013	Nov-13	SR	Shell Rock	89	2	7.172	3.041	1.069
2013	Nov-13	HM	Benny Sand	8	1	51.209	62.095	7.112
2013	Nov-13	HM	Benny Sand	11	4	46.552	32.762	4.530
2013	Nov-13	HM	Benny Sand	6	2	23.754	23.265	4.979
2013	Nov-13	HM	Benny Sand	14	4	21.524	33.967	6.071
2013	Nov-13	HM	Benny Sand	9	1	20.894	48.573	3.707
2013	Nov-13	HM	Benny Sand	22	2	15.449	19.963	8.559
2013	Nov-13	HM	Benny Sand	7	1	10.268	8.167	2.021
2013	Nov-13	HM	Benny Sand	44	2	8.176	9.147	4.772
2013	Nov-13	HM	Benny Sand	30	2	7.688	1.624	5.288
2013	Nov-13	HM	Benny Sand	3	2 2	6.272	5.239	1.237
2013	Nov-13	HM	Benny Sand	37	2	1.208	0.703	2.391
2013	Nov-13	HM	Bennies	87	1	59.488	39.058	4.693
2013	Nov-13	HM	Bennies	102	4	27.591	14.223	1.743
2013	Nov-13	HM	Bennies	70	1	26.288	16.440	2.238
2013	Nov-13	HM	Bennies	99	2	24.774	16.804	8.697
2013	Nov-13	HM	Bennies	123	1	23.283	37.923	5.281
2013	Nov-13	HM	Bennies	35	2	18.220	62.301	12.502
2013	Nov-13	HM	Bennies	72	2	3.415	4.089	1.091
2013	Nov-13	HM	Bennies	112	2	3.066	4.489	3.400
2013	Nov-13	HM	Bennies	37	2	2.925	3.307	2.042
2013	Nov-13	HM	Bennies	18	2	1.732	3.878	3.576
2013	Nov-13	HM	Bennies	125	2	0.385	0.671	5.030
2013	Nov-13	HM	Bennies	121	2	0.271	0.181	8.606
2013	Nov-13	HM	Bennies	127	2	0.095	0.498	3.590
2013	Oct-13	HM	NantuxentP	15	1	30.260	39.988	6.405
2013	Oct-13	HM	NantuxentP	25	1	22.395	52.087	9.680
2013	Oct-13	HM	NantuxentP	68 19	2	22.237	25.811	9.718
2013	Oct-13	HM	NantuxentP	18	1	19.266	17.377	9.066
2013	Oct-13	HM	NantuxentP	29 12	2	11.356	25.879	8.689
2013 2013	Oct-13 Oct-13	HM HM	NantuxentP	13	2 1	5.617 30.489	7.059 33.855	4.259 10.928
2013	0ct-13	НМ	Hog Shoal Hog Shoal	1 6	2	17.333	13.973	7.179
2013	0ct-13	НМ	Hog Shoal	0 4	2 1	9.357	20.678	4.434
2013	0ct-13	HM	Hog Shoal	5	1	4.551	28.785	9.546
2013	0ct-13	HM	Hog Shoal	9	2	3.429	37.882	7.180
2013	0ct-13	HM	Hog Shoal	16	2	0.223	2.334	1.628
2013	0ct-13	HM	New Beds	26	1	45.888	46.252	14.225
2013	0ct-13	HM	New Beds	22	1	31.418	62.209	7.844
2013	0ct-13	HM	New Beds	3	2	28.576	74.757	12.649
2013	0ct-13	HM	New Beds	2	2	21.593	21.235	4.400
2013	0ct-13	НМ	New Beds	24	1	13.625	44.824	10.904
2013	0ct-13	HM	New Beds	13	2	12.973	22.852	5.389
2013	0ct-13	НМ	New Beds	39	2	7.248	29.141	11.681
2013	0ct-13	HM	New Beds	53	1	3.994	6.602	7.899
2013	Oct-13	НМ	New Beds	54	2	3.220	19.119	9.369
2013	0ct-13	HM	Strawberry	5	1	2.471	11.019	8.675
2013	Oct-13	HM	Strawberry	1	2	0.442	0.400	3.566
2013	0ct-13	HM	Strawberry	11	2	0.143	1.499	4.438
2013	0ct-13	HM	Strawberry	8	2	0.043	0.056	0.510

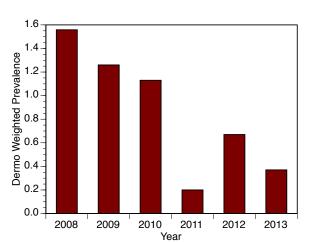

Data Year	Coll. Date (m-yr)	Region	Bed	Grid	Stratum	Oyster/m2	Spat/m2	Cultch/m2
2013	0ct-13	НМ	Hawk's Nest	27	1	16.639	43.936	6.734
2013	0ct-13	НМ	Hawk's Nest	3	2	3.506	45.750	13.660
2013	0ct-13	HM	Hawk's Nest	5	1	1.004	2.796	4.140
2013	0ct-13	HM	Hawk's Nest	7	2	0.340	7.284	8.996
2013	Oct-13	HM	Hawk's Nest	22	2	0.146	2.365	4.297
2013	Oct-13	HM	Beadons	4	1	8.140	46.525	4.920
2013	Oct-13	HM	Beadons	9	2	3.238	11.145	1.544
2013	Oct-13	HM	Beadons	8	1	1.633	2.552	1.785
2013	Oct-13	HM	Beadons	5	2	0.198	0.443	0.450
2013	Oct-13	HM	Beadons	16	2	0.191	0	2.288
2013	Oct-13	HM	Vexton	9	1	4.292	79.465	11.405
2013	Oct-13	HM	Vexton	4	1	3.207	26.031	6.182
2013	Oct-13	HM	Vexton	3	2	1.954	45.608	11.422
2013	Oct-13	HM	Vexton	17	2	0.254	13.739	10.292
2013	Oct-13	HM	Egg Island	28	2	1.687	18.001	11.734
2013	Oct-13	HM	Egg Island	41	2	0	1.533	10.807
2013	Oct-13	HM	Egg Island	66	2	0	0.028	0.228
2013	Oct-13	HM	Egg Island	82	2	0	0	12.578
2013	Oct-13	HM	Egg Island	98	2	0	0	0.088
2013	Oct-13	HM	Egg Island	62	1	0	0.522	15.179

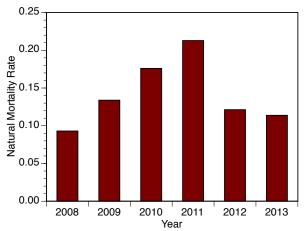
Appendix B.1. Region Trends. Six-year time series summary for the Very Low Mortality region. Left panels show total abundance (excluding spat), abundance by size class (excluding spat), and spat abundance (= oysters < 20 mm). Right panels show Dermo levels, natural mortality rate and fishing mortality rate.

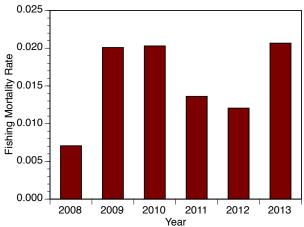


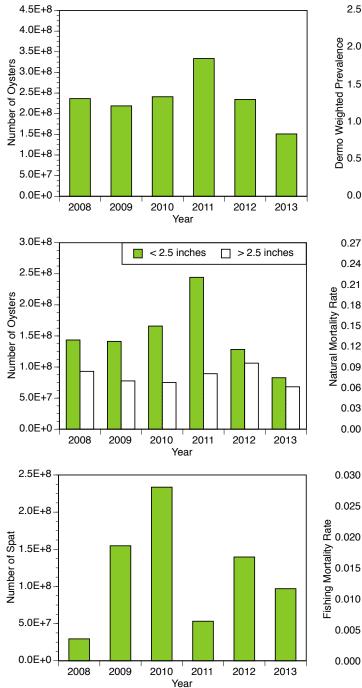
Very Low Mortality

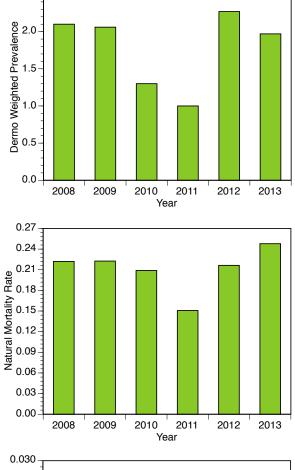


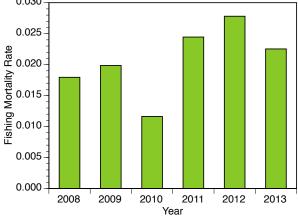

Year



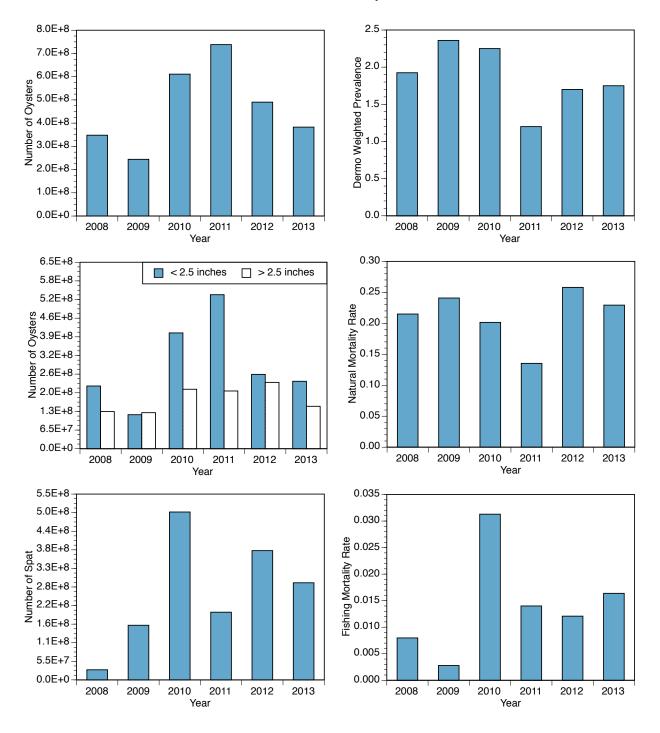

Appendix B.2. Region Trends. Six-year time series summary for the Low Mortality region. Left panels show total abundance (excluding spat), abundance by size class (excluding spat), and spat abundance (= oysters < 20 mm). Right panels show Dermo levels, natural mortality rate and fishing mortality rate.


Low Mortality

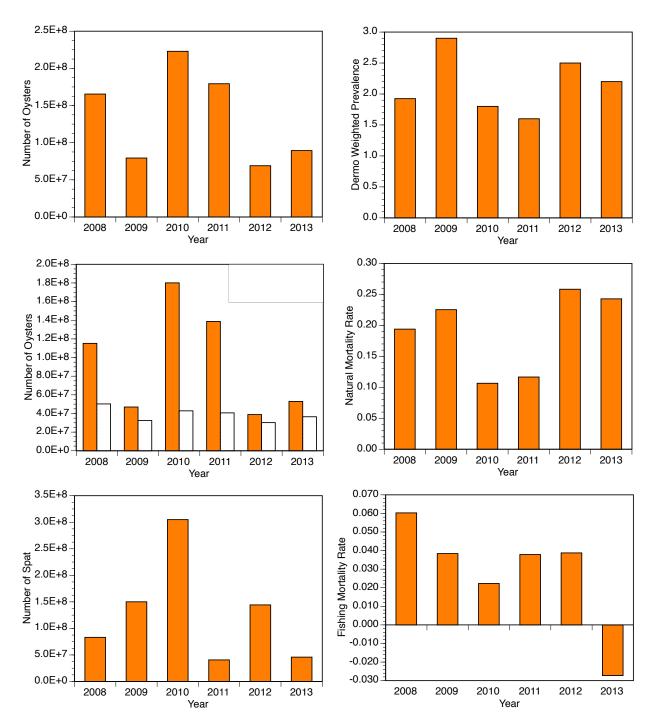




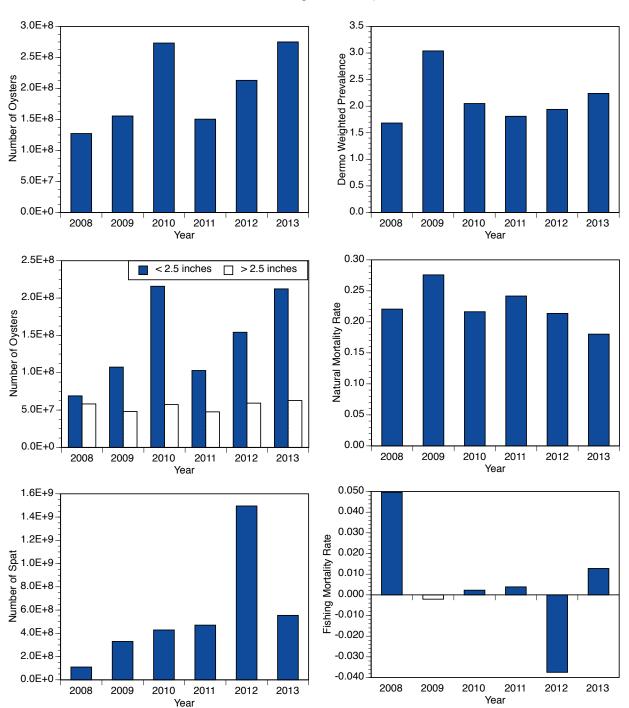
Appendix B.3. Region Trends. Six-year time series summary for the Medium Mortality Transplant region. Left panels show total abundance (excluding spat), abundance by size class (excluding spat), and spat abundance (= oysters < 20 mm). Right panels show Dermo levels, natural mortality rate and fishing mortality rate.



Medium Mortality Transplant



Appendix B.4. Region Trends. Six-year time series summary for the Medium Mortality Market region. Left panels show total abundance (excluding spat), abundance by size class (excluding spat), and spat abundance (= oysters < 20 mm). Right panels show Dermo levels, natural mortality rate and fishing mortality rate.


Medium Mortality Market

Appendix B.5. Region Trends. Six-year time series summary for the Shell Rock region. Left panels show total abundance (excluding spat), abundance by size class (excluding spat), and spat abundance (= oysters < 20 mm). Right panels show Dermo levels, natural mortality rate and fishing mortality rate.

Shell Rock

Appendix B.6. Region Trends. Six-year time series summary for the High Mortality region. Left panels show total abundance (excluding spat), abundance by size class (excluding spat), and spat abundance (= oysters < 20 mm). Right panels show Dermo levels, natural mortality rate and fishing mortality rate.

High Mortality

Appendix C.1 2013 Intermediate Transplant memorandum for the Low Mortality region. The transplant was conducted from April 22 to April 29.

THE STATE UNIVERSITY OF NEW JERSEY

RUTGERS

HASKIN SHELLFISH RESEARCH LABORATORY

Institute Of Marine And Coastal Sciences - New Jersey Agricultural Experiment Station 6959 Miller Avenue, Port Norris, NJ 08349-3617

REPLY TO:

Kathryn A. Ashton-Alcox or David Bushek (856) 785-0074; fax (856) 785-1544 <u>kathryn@hsrl.rutgers.edu</u> bushek@hsrl.rutgers.edu

May 7, 2013

MEMORANDUM TO: Russell Babb, Jason Hearon, Craig Tomlin FROM: Kathryn Alcox Haskin Shellfish Research Laboratory

SUBJECT: Intermediate Transplant – Low Mortality Region

An intermediate transplant from beds in the Low Mortality region was conducted from April 22 to April 29, 2013. The goal for this transplant was to move 9,962,070 oysters which is the 60th percentile exploitation rate for the Low Mortality transplant beds listed in Table 23 of the 15th SAW document. Due to some oversights, there was one day of transplanting from Arnolds which the SARC had recommended against and one boat transplanted for half a day from Liston Range which is in the closed Very Low Mortality region. There were a total of 21,050 bushels of culled material removed from this region by five boats as follows:

2,700 bushels from Arnolds	to Shell Rock 34
8,600 bushels from Upper Arnolds	to Shell Rock 34
6,950 bushels from Upper Arnolds	to Shell Rock 27

2,250 bushels from Round Island	to Shell Rock 27
550 bushels from Liston Range	to Shell Rock 27

Deck samples were obtained from each boat each day with boatloads either measured or estimated by NJDEP. The number of oysters per bushel ranged from 323 to 503 with an average of 402. The percent cultch (not including boxes) in this transplant ranged from 16 to 49 % with an average of 28%.

The 60th percentile exploitation rate maximum of 9,962,070 oysters was not quite met with a total of 8,459,940 oysters moved in the 24 boat-days. This is a similar result to the 2010 transplant which also had a 60th percentile exploitation rate goal. The 2013 transplant included 4,706,156 small oysters that are not included in the quota increase calculations and 3,710,337 oysters that are included in those calculations. Using the conversion of 266 market-size oysters per bushel, this part of the transplant can increase the quota by up to 13,949 bushels. This projection is higher than the expected 12,883 bushels listed in Table 23 of the 15th SAW report for the 60th percentile exploitation rate for the Low Mortality transplant beds.

Tables can be found on the following page:

Tables for 2013 Intermediate Transplant—Low Mortality Region

OYSTERS PER BU	BOAT 1	BOAT 2	BOAT 3	BOAT 4	BOAT 5
4/22/13	383	400		449	
4/23/13	424	323	402		
4/24/13	326	444	390	390	329
4/25/13	467	468		503	340
4/26/13	422	328	422		
4/29/13	325	436	434	432	

PERCENT	BOAT 1	BOAT 2	BOAT 3	BOAT 4	BOAT 5
CULTCH					
4/22/13	33%	30%		23%	
4/23/13	21%	28%	24%		
4/24/13	28%	28%	33%	17%	34%
4/25/13	16%	37%		13%	31%
4/26/13	28%	49%	33%		
4/29/13	37%	37%	21%	21%	

PERCENT BOXES	BOAT 1	BOAT 2	BOAT 3	BOAT 4	BOAT 5
4/22/13	3%	2%		3%	
4/23/13	2%	3%	4%		
4/24/13	3%	4%	3%	3%	3%
4/25/13	2%	5%		2%	2%
4/26/13	4%	4%	5%		
4/29/13	2%	5%	6%	1%	

Appendix C.2 2013 Intermediate Transplant memorandum for the Medium Mortality Transplant region. The transplant was conducted from April 30 to May 3.

THE STATE UNIVERSITY OF NEW JERSEY RUTGERS

HASKIN SHELLFISH RESEARCH LABORATORY

Institute Of Marine And Coastal Sciences - New Jersey Agricultural Experiment Station 6959 Miller Avenue, Port Norris, NJ 08349-3617

REPLY TO: Kathryn A. Ashton-Alcox or David Bushek (856) 785-0074; fax (856) 785-1544 <u>kathryn@hsrl.rutgers.edu</u> bushek@hsrl.rutgers.edu

May 7, 2013

MEMORANDUM TO: Russell Babb, Jason Hearon, Craig Tomlin FROM: Kathryn Alcox Haskin Shellfish Research Laboratory

SUBJECT: Intermediate Transplant - Medium Mortality Region

An intermediate transplant from Upper Middle, and Sea Breeze beds in the Medium Mortality Transplant region was conducted from April 30 to May 3, 2013. The goal for this transplant was to move 5,465,140 oysters: the 60th percentile exploitation rate for the Medium Mortality Transplant beds listed in Table 23 of the 15th SAW document. The SARC advised that no more than half the amount could be taken from Middle bed. There were a total of 14,600 bushels of culled material removed from the Medium Mortality Transplant region by four boats as follows:

6,200 bushels from Sea Breezeto Bennies Sand 145,200 bushels from Middleto Bennies Sand 143,200 bushels from Upper Middleto Bennies Sand 14

Deck samples were obtained from each boat each day with boatloads either measured or estimated by NJDEP. The number of oysters per bushel ranged from 143 to 365 with an average

of 262. The percent cultch (not including boxes) in this transplant ranged from 8 to 41% with an average of 27%.

The 60th percentile exploitation rate maximum of 5,465,140 oysters was not met. Four boats moved a total of 3,798,531 oysters in 13 boat-days which is somewhat under the 50th percentile exploitation rate maximum for this region of 4,409,642 (15th SAW report Table 23). This included 1,295,766 small oysters that are not included in the quota increase calculations and 2,528,170 larger oysters that are included in those calculations. Using the conversion of 266 market-size oysters per bushel, this part of the transplant can increase the quota by up to 9,505 bushels.

Tables can be found on the following page:

Tables for 2013 Intermediate Transplant—Medium Mortality Region

OYSTERS PER BU	BOAT 1	BOAT 2	BOAT 3	BOAT 4
4/30/13	254	273	274	266
5/1/13	218	143	282	
5/2/13	242	231	221	
5/3/13	301	333	365	

PERCENT CULTCH	BOAT 1	BOAT 2	BOAT 3	BOAT 4
4/30/13	34%	20%	33%	23%
5/1/13	35%	39%	27%	
5/2/13	40%	19%	41%	
5/3/13	8%	9%	21%	

PERCENT BOXES	BOAT 1	BOAT 2	BOAT 3	BOAT 4
4/30/13	9%	12%	13%	12%
5/1/13	11%	19%	13%	
5/2/13	3%	19%	5%	
5/3/13	10%	18%	2%	