Tools to Measure the Water Quality Benefits Provided by Oysters and Other Bivalves

Janine Barr, M.S. Aquaculture Growers Forum - November, 29 2023 -

What is an Eastern oyster?

- Marine bivalve
 - Canada through Gulf Coast
 - Found on reefs and farms

Oysters and Water Quality Benefits

- Suspension feeders
- Oysters are a tool in the nutrient mitigation toolbox
- 85% decrease in oyster reefs in the past 130 years (Beck et al. 2011)

Scale of water quality benefits provided by oyster farms are not well understood.

Ecosystem Service Value

• Chesapeake Bay TMDL (Maryland and Virginia)

• Bioextraction vs. Filtration

How can we use science to improve local water quality in the Mid-Atlantic and help farmers' bottom line?

Estimate how much "stuff" oysters filter from the water column: annually, seasonally, and daily.

Presentation Overview

- Part 1 Measuring seasonal water quality improvement at **three oyster farms** in the mid-Atlantic.
- Part 2 Tools available for estimating water quality improvements generated by shellfish.
- Part 3 Next steps for the Rutgers Oyster Water Quality Benefits Calculator

Part 1 – Measuring oyster feeding behavior at three farms in the Mid-Atlantic

Barnegat Bay (n=3)

Delaware Bay (n=4)

Rehoboth Bay (n=4)

Oyster Farm Methods

Galimany et al. 2018

Iglesias et al. 1998

Key Environmental Parameters

- Water Temperature (Temp)
- Salinity
- Total Particulate Matter (TPM)
- Organic Content of TPM (WC.Org)

Measuring time it takes oysters to digest food.

Key Physiological Parameters

Filtration Rate

Clearance Rate

Biodeposit Rate

Delaware Bay Oysters - Filtration Rate

Results - Filtration Physiology

What was the estimated water quality impact of these farms?

Farm Location	Number of Olympic Sized Pools Cleared (10 ⁹ L per yr)	Particles Filtered (tons per year)	Mass of Deposited Pseudofeces (tons per year)
Barnegat Bay	2.4	78.9	62.1
Delaware Bay	0.8	43.8	36.4
Rehoboth Bay	1.2	32.5	20.2

*water quality benefits estimated for a full calendar year *last column is not total biomass production How do these oysters compare to the often sited "an oyster can filter up to 50 gallons per day" stat?

Farm Location	Spring (gal day-1)	Summer (gal day ⁻¹)	Fall (gal day⁻¹)
Barnegat Bay		16.8 (34.1)	3.5 (9.5)
Delaware Bay	5.7 (17.2)	3.4 (10.3)	4.3 (7.7)
Rehoboth Bay	1.8 (4.0)	9.4 (28.2)	3.2 (7.3)

*values reported as the mean and (maximum) volume of water cleared by individual oysters at each farm location and during each season

Part 2 – Tools for estimating water quality benefits provided by shellfish .

Existing Calculators – The Farm Model

RUN THE FARM MODEL

Cockles IMTA s-1 L-1

Mussels ~

Mussels

Clams

Simulate now

Open a model
Please select...

 \sim

Save model

Existing Calculators – University of Florida

Florida Clam Farm Environmental Benefits Calculator

Enter county where your clam farm is located:	nitrogen removal and carbon
Brevard	sequestration of clams
Enter your annual clam farm production:	*should be used as
Number of littleneck (1" or greater) clams harvested	"a starting point" for understanding
Number of buttons (7/8") clams harvested	potential ecosystem benefits of clams
Pounds of pasta (5/8") clams harvested (calculator will convert to numbers)	
Calculate	

*estimates

Existing Calculators – The Nature Conservancy and NOAA

Delaware Bay, NJ

To use the calculator, first select a bay location from our database. If using your own site, select the closest site within our database to load oyster mass formula and fish benefits data.

ect site	Reset data

BAY PROPERTIES

Sel

Bay Volume		Residence T	ime
12668400	1000m ³	8	0
Temperature		Current Ree	fArea
22.18	°C	11471	

CURRENT OYSTER PROPERTIES 📀

Mean Oyster Length (< 76mm)	
51.98	mm
Mean Oyster Density (< 76mm)	

13.14

days

ha

mm

ind/m²

%

Mean Oyster Density

(≥76mm)

86.7

2.36

ind/m²

An estimated **12%** of the bay is currently filtered by oysters. To increase the filtration of the bay to 50% will require 0 ha (0 ac) of restored habitat.

Filtration	Fish Production
ESTUARY F	LTRATION 📀
	Estuary filter volume 66.0 B L/h
	Historic filtration 24.0 B L/h (36%)
	Current filtration 7.6 B L/h (12%)

shown until at least one goal oyster length and density is entered. All calculations are estimates only, based on an extensive literature review.

Ecoregion Virginian

Oyster mass to Length formula Bushek unpublished data 0.00003*Length^2.4503

Rutgers Oyster Eco-Serve Calculator - Methods

each day for all the oysters on a given farm

Part 3 – Next Steps
Gather input on, and publish, the calculator
Develop calculator 2.0

ACKNOWLEDGEMENTS

Existing Calculators

- The Farm Model <u>http://www.farmscale.org/</u>
- University of Florida <u>https://shellfish.ifas.ufl.edu/farm-benefits-</u> <u>calculator/</u> (and background information here: <u>https://shellfish.ifas.ufl.edu/environmental-benefits/</u>)
- The Nature Conservancy and NOAA https://oceanwealth.org/tools/oyster-calculator/

Research and Calculator Team

- Daphne Munroe
- Rob Muldowney
- Laura Steeves
- Lisa Calvo
- Julie Rose
- Gary Taghon

Field Volunteers: Hannah Burke Alex Ambrose Jen Gilmore Jenn Gius Dr. Sarah Borsetti Elizabeth Bouchard Iris Burt Taylor Dolan Jaime Haggard Ari Horgan Emma Huntzinger Rebecca Lucero Grace Jackson **Emily Manuel** Joe Nichols Joey O'Brien Chris Roan Miranda Rosen Gab Rosenthal Ailey Sheehan Patty Woodruff Zhenwei Wang Dan Zeng

Collaborators and Funders

Collaborators

- Farmers:
 - Shaughn Juckett and Brian Harman
 - Marc Zitter
 - Mark Casey and Brent Hott
- Research Space:
 - Tracey Vance of West Bay Water Front Community
 - Sam Ratcliff of Rutgers Cape Shore Lab
 - Danica and Jeff Stetler of Boat World Marina
- Research Vessel:
 - NJDEP and the crew of R/V James W. Joseph
- Colleagues:
 - Rutgers' DMCS and the Haskin Shellfish Research Lab
 - Partnership for the Delaware Estuary
 - Dr. Danielle Kreeger, Kurt Cheng, and Leah Morgan
 - NOAA Northeast Fisheries Science Center
 - Genevieve Barnatchez and Dr. Shannon Meseck

Funders

Thank you!!

Email: janine.barr@rutgers.edu

